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Abstract. In this paper we consider the problem of computing the difference Galois

groups of order three equations for a large class of difference operators including the shift

operator (Case S), the q-difference operator (Case Q), the Mahler operator (Case M) and

the elliptic case (Case E). We show that the general problem can be reduced to several

ancillary problems. We prove criteria to detect the irreducible and imprimitive Galois

groups. Finally, we give a sufficient condition of differential transcendence of solutions

of order three difference equations. We also compute the difference Galois group of an

equation suggested by Wadim Zudilin.

1. Introduction

Difference Galois theory is the subject of many recent papers because, for instance, of

its application to (differential) transcendence of solutions of difference equations. More

precisely, consider a field k equipped with an automorphism ϕ. Let C ⊂ C be an

algebraically closed field of characteristic 0. Typical examples we are going to consider in

this paper are

• (Case S, shift) k = C(z) and ϕY (z) = Y (z + h) with h ∈ C∗;

• (Case Q, q-difference) k = C
(
z1/∗

)
:= ∪∞

ℓ=1C(z1/ℓ) and ϕY (z) = Y (qz) with

q ∈ C∗ that is not a root of unity;

• (Case M, Mahler) k = C
(
z1/∗

)
and ϕY (z) = Y (zp) with p ≥ 2 an integer;

• (Case E, elliptic) Let Λ be a lattice of C. Without loss of generality, we assume

that Λ = Z + Zτ with Im(τ) > 0. Let ℘(z) be the corresponding Weierstrass

function. In this example, k = Mer(Λ∞) := ∪∞
ℓ=1C(℘(z/ℓ), ∂z℘(z/ℓ)) and

ϕY (z) = Y (z + h) with h ∈ C∗ such that hZ ∩ Λ = {0}.
Then, consider the difference system

ϕY = AY, A ∈ GLn(k).

The algebraic relations between functions which are entries of matrix solutions of the

difference system are reflected by a difference Galois group, which is an algebraic group

attached to a difference equation (see for example [VdPS97, Phi15]). Roughly speaking, if

the difference Galois group is sufficiently big then there are no algebraic relations between

these functions. Moreover, thanks to a differential Galois theory for difference equations
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(see [HS08]), one can attach a differential algebraic group to a difference equation, which

is Zariski-dense in the difference Galois group. Under conditions on the difference Galois

groups, this theory may also prove that some solutions of linear difference equations do

not satisfy algebraic differential equations (see [HS08, AS17, DHR18, ADHW20, ADH21,

ADR21, DHR21]) and has been recently used to prove that, in some cases, the generating

series of walks in the quarter plane are differentially transcendental, see for instance

[DHRS18]. There are many other applications of difference Galois theory that motivate

the computation of the difference Galois groups. We could also mention the computation

of the difference Galois groups of q-hypergeometric equations, see [Roq11] and density

theorems [RS06, Pou20] but the present introduction does not pretend to be exhaustive.

Toward the proof of differential transcendence, we often need to prove that the difference

Galois group is sufficiently big, making it important to be able to compute the latter.

However, the computation of difference Galois groups is in general a difficult task. In the

literature one can find many algorithms for the computation of Galois groups. The most

developed area is the one of differential equations: many algorithms are given to compute

differential Galois groups (which are algebraic groups attached to a linear differential

system), see for example [Kov86, SU93, CS99, BCWDV16, DW19]. There is a general

algorithm for the computation of the Galois groups of linear differential equations of an

arbitrary order but it is not effective (see for example the algorithm of Hrushovski in

[Hru02] and some improvements [Fen15, AMP22]). In contrast, the case of difference

equations is less developed. Algorithms have been given for the computation of difference

equations of order 1 and 2 in these four famous cases: the shift (see [VdPS97, Hen98]),

the q-difference (see [Hen97]), the Mahler (see [Roq18]) and the elliptic cases (see [DR15]).

For the shift case, an analogue of Hrushovski’s algorithm has been developed in [Fen18]. It

computes the Galois groups for equations of arbitrary order whose coefficients are rational

functions but is still inefficient. However, in general, for the Galois groups of difference

equations of order 3 or more, only few things are known. The aim of this article is to

explain how one can compute Galois groups of difference equations of order 3 under mild

assumptions on the difference field to which the coefficients of the difference equations

belong. In particular, it takes into account the four previous difference equations. We

highlight that we are mainly concerned by the theoretical aspects of the algorithm and no

study of complexity will be made. Throughout this paper, we explain what we need to be

able to do for using it in practice. In fact, the key point to apply it concretely is to be

able to find rational (resp. hyperexponential) solutions to certain difference equations.

The starting point of this paper was an example suggested by Wadim Zudilin. This

example is running as a common thread throughout this paper. The following double sum

is related to the Rogers-Ramanujan identities

U(z, t) =

∞∑
m,n=0

qm
2+3mn+3n2

zmtn

(q; q)m(q3; q3)n
, with (⋆; q)n = (1− ⋆)× · · · × (1− ⋆qn−1).

For each fixed value of t, z 7→ U(z, t) satisfies a q-difference equation:

(1.1) ty(q3z)− (t+ qt+ q4z2)y(q2z) + q(t− q2z)y(qz) + q3zy(z) = 0.
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One of the questions asked by Zudilin was the computation of the Galois groups for the

values t = 1 and t = q2. We are going to compute the difference Galois groups over C(z1/∗)
for every value of t ̸= 0 and see that it does not depend on the parameter t. Note that

when t = 0, (1.1) is a q-difference equation of order 2 and the computation could be made

using [Hen98].

Theorem (Theorem 6.13). For all t ∈ C∗, the difference Galois group of (1.1) is GL3(C).

Using [DHR21, Corollary 3.1] and Theorem 6.13, we may prove that for all t ∈ C∗, there

are no nontrivial algebraic differential relations between U(z, t), U(qz, t) and U(q2z, t) over

C(z1/∗).
Now, we describe more precisely the content of this paper. After some reminders about

the Galois theory of difference equations in Section 2.1, we recall a criterion in Section 2.2

to know if the Galois group G of a difference equation is reducible or not. In Section 2.3,

we explain what we need, as a framework, in order to compute G in practice. In Section 3

we prove general results about Galois groups of difference systems of arbitrary order. We

explain the strategy for computing G if G is reducible in Section 3.1. If G is not reducible

we distinguish two cases: the imprimitive case and the primitive case. For the imprimitive

case, we give information (the connected component of the identity and its index in G) on

the possible Galois groups which occur when the order of the difference system is a prime

number in Section 3.2. Moreover, we know which information correspond to G thanks to

the knowledge of the determinant of G (which is the Galois group of an equation of order

1). After these general results, we recall the strategies for computing the Galois groups of

the difference equations of order 1 and the diagonal systems in Section 4 and the strategies

for the difference equations of order 2 in Section 5. Section 6 is devoted to the order three

case. We give an application to the differential transcendence in Section 7.

Notations and conventions. In what follows, all rings are commutative with identity and

contain the field of rational numbers. In particular, all fields are of characteristic zero.

If G is an algebraic group, we denote by G0 the connected component of the identity of

G. Let (k, ϕ) be a difference field, that is, a field equipped with an automorphism and let

[A]ϕ be the difference system ϕ(Y ) = AY where A ∈ GLn (k). To lighten notations, we

denote it [A] when there is no ambiguity.

2. Difference algebra

2.1. Galois groups. In this section, we make a short overview of the Galois theory of linear

difference equations. For more details on what follows, we refer to [VdPS97, Chapter 1].

A difference ring is a commutative ring R equipped with an automorphism ϕ : R → R.

We denote by CR := {c ∈ R|ϕ(c) = c}, the constants of the difference ring (R, ϕ). A

difference ideal I of a difference ring (R, ϕ) is an ideal such that ϕ(I) ⊂ I. If R is a field,

we call (R, ϕ) a difference field. In this case, CR is a field, the field of constants. With an

abuse of notations, we will often denote by R the difference ring (R, ϕ).

Throughout this paper, we assume that (k, ϕ) is a difference field such that its field of

constants Ck is algebraically closed.



4 THOMAS DREYFUS AND MARINA POULET

If we consider a difference system

(2.1) ϕ(Y ) = AY, with A ∈ GLn (k) ,

according to [VdPS97, Section 1.1], there exists a difference ring extension (L, ϕ) of (k, ϕ)

such that:

• there exists a fundamental matrix of solutions of (2.1) with entries in L, that is,

a matrix U ∈ GLn (L) such that ϕ (U) = AU ;

• L is generated as a k-algebra by the entries of U and det (U)−1;

• the only difference ideals of L are {0} and L.

A difference ring L which satisfies these conditions is called a Picard-Vessiot ring for the

system (2.1) over k. It is unique up to isomorphisms of difference rings over k. We have

the following property: CL = Ck.

The difference Galois group G of (2.1) over k is the group of k-linear automorphisms

of L commuting with ϕ, that is,

G := {σ ∈ Aut(L/k) | σ ◦ ϕ = ϕ ◦ σ} .

For any fundamental matrix U ∈ GLn(L), an easy computation shows that U−1σ(U) ∈
GLn(CL) = GLn(Ck) for all σ ∈ G. By [VdPS97, Theorem 1.13], the faithful

representation

ρ : G → GLn(Ck)

σ 7→ U−1σ(U)

identifies G with a linear algebraic subgroup G ⊂ GLn(Ck). If we take another

fundamental matrix of solutions V , we find an algebraic group that is conjugated to

the first one. In this paper, by “computation of the difference Galois group G”, we mean

“computation of an algebraic subgroup of GLn (Ck) conjugated to ρ(G)”, thus we work up

to conjugations. Abusing notations, we will still denote by G the image of the difference

Galois group under the above representation.

We denote by k
〈
ϕ, ϕ−1

〉
the Öre algebra of noncommutative Laurent polynomials with

coefficients in k such that ϕf = ϕ(f)ϕ for all f ∈ k. We consider the difference equation

(2.2) Ly = 0, where L :=
n∑

i=0

aiϕ
i ∈ k ⟨ϕ⟩ with a0an ̸= 0 ,

that is, a0y + · · · + anϕ
n(y) = 0 with ai ∈ k and a0an ̸= 0. We transform the difference

equation (2.2) into the difference system

ϕ(Y ) = ALY, where AL =


1

. . .

1

−a0/an . . . −an−1/an


is the companion matrix associated with L. By definition, the difference Galois group of

(2.2) is the difference Galois group of the system [AL].

The change of variables Z := TY , T ∈ GLn(k), transforms the system ϕY = AY with

A ∈ GLn(k) into ϕZ = BZ where B := ϕ(T )AT−1 ∈ GLn(k). Let A,B ∈ GLn(k).
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We will say that [A] and [B] are equivalent over k if there exists T ∈ GLn(k) such that

B = ϕ(T )AT−1.

In what follows, we assume moreover that the field k satisfies:

• k is a C1-field, that is every non-constant homogeneous polynomial P over k has

a nontrivial zero provided that the number of its variables is more than its degree;

• k is the only finite algebraic difference field extension of k.

All the above mentioned examples (S,Q,M,E) satisfy these two conditions, see [Hen97,

Hen98, DR15, Roq18]. Note that in the q-difference case, the field (C(z), ϕ) is a difference

field but there are nontrivial finite algebraic difference field extensions. For instance

C(z1/2)|C(z) is of degree two and we may extend ϕ on it with ϕ(z1/2) = q1/2z1/2. This is

the reason why we consider C(z1/∗) instead of C(z) in that setting. Similar considerations

occur in the elliptic case.

We recall that C := Ck is by hypothesis algebraically closed and the characteristic

of k is zero. The following statement will be crucial in what follows. See [VdPS97,

Propositions 1.20 and 1.21], see also [DR15, Theorem 2.4].

Theorem 2.1. Let G ⊂ GLn(C) be the difference Galois group over (k, ϕ) of (2.1). Then,

the following properties hold:

• G/G0 is finite and cyclic, where G0 is the identity component of G;

• there exists B ∈ G(k) such that (2.1) is equivalent to ϕY = BY over k.

Let G̃ be an algebraic subgroup of GLn(C) such that A ∈ G̃(k). The following properties

hold:

• G is conjugate to a subgroup of G̃;

• any minimal element in the set of algebraic subgroups H̃ of G̃ for which there

exists T ∈ GLn(k) such that ϕ(T )AT−1 ∈ H̃(k) is conjugate to G;

• G is conjugate to G̃ if and only if, for any T ∈ G̃(k) and for any proper algebraic

subgroup H̃ of G̃, one has that ϕ(T )AT−1 /∈ H̃(k).

In practice, to compute the difference Galois group, we are going to compute a gauge

transformation such that the transformed system lies in G(k). This leads to the following

definition.

Definition 2.2. Let G ⊂ GLn(C) be the difference Galois group over (k, ϕ) of the system

(2.1). We say that the system (2.1) is in reduced form (or reduced) when A ∈ G(k).

Given a difference system ϕ(Y ) = AY and an integer ℓ ⩾ 1, we can iterate it:

(2.3) ϕℓ(Y ) = A[ℓ]Y, where A[ℓ] = ϕℓ−1(A)× · · · ×A .

Let G[ℓ] be the difference Galois group of the system (2.3). The following lemma may

be deduced from the proof [DHR21, Proposition 4.6] in the particular case where the

parametric operator is the identity, and is proved in [ADH21, Proposition 4.10]. It

compares the Galois groups G[ℓ], ℓ ⩾ 1.

Lemma 2.3. For all ℓ ⩾ 1, G[ℓ] has the same connected component of the identity as G.

Furthermore, there exists ℓ0 ⩾ 1, such that G[ℓ0] is the connected component of the identity

of G.
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2.2. Factorisations of difference operators. In this subsection, we focus on the reducible

difference operators and make the relation with the reducible Galois groups and the Riccati

equation. Let G be an algebraic subgroup of GLn(C). We say that G is reducible if there

exists a non trivial vector subspace V of Cn such that for all σ ∈ G, σ(V ) ⊂ V . We say

that G is irreducible otherwise.

The following lemma relates the irreducibility of the difference Galois group with the

factorisation of the difference operator, see [ADH21, Lemma 4.4].

Lemma 2.4. Let G ⊂ GLn(C) be the difference Galois group of (2.1). Then, G is reducible

with a nontrivial invariant space of dimension 0 < m < n, if and only if there exists

T ∈ GLn(k), A1 ∈ GLm(k), and A2, A3 matrices of convenient size, such that

ϕ(T )AT−1 =

(
A1 A2

0 A3

)
.

If we consider the difference system [AL] attached to (2.2), then its difference Galois group

is reducible with A1 ∈ GLm(k) if and only if L admits a nontrivial right factor of order

m.

Thus, to determine whether G is irreducible or not, we have to determine whether the

difference operator L defined in (2.2) admits a nontrivial right factor or not. For right

factors of order one, we have the following criterion.

Lemma 2.5 (Lemma 2 in [ABPS21]). Let L be the difference operator defined in (2.2). The

operator of order one ϕ− α is a right factor of L if and only if

n∑
i=0

ai

i−1∏
j=0

ϕj(α) = 0.

Although the above equation, called the Riccati equation, is nonlinear it might be solved

in some situations we are going to describe later.

When L has order two, it admits a nontrivial factor if and only if it admits a nontrivial

right factor of order one.

When L has order three, it admits a nontrivial factor if and only if it admits a nontrivial

factor of order one. The latter may be either a right or a left factor. Let us see how

we can pass from left factor to right factor. We define the dual M∨ of an operator

M =
∑n

i=m aiϕ
i ∈ k

〈
ϕ, ϕ−1

〉
by

M∨ :=
n∑

i=m

ϕ−i(ai)ϕ
−i.

By linearity, if M1,M2 ∈ k
〈
ϕ, ϕ−1

〉
, we can check that

(M1M2)
∨ = M∨

2 M
∨
1 .

Hence, an operator has a left factor of order one if and only if its dual has a right factor

of order one. So we will focus on right factors of order one.
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Remark 2.6. Assume n > 1 and that L admits a right factor of order one so let us write

L as L̃(ϕ − α) where α ∈ k and L̃ ∈ k
〈
ϕ, ϕ−1

〉
has order n − 1. Let y1 be a solution of

Ly = 0 such that ϕ(y1) ̸= αy1 and let y2 := ϕ(y1) − αy1. By construction y2 ̸= 0 is a

solution of L̃y = 0. If Y :=
(
y1, y2, . . . , ϕ

n−2(y2)
)t

then ϕ(Y ) = ÃY where

Ã :=


α 1 0 · · · 0

0
... A

L̃

0

 .

Thus, the companion system associated with Ly = 0 is equivalent to the system [Ã].

Furthermore, A
L̃
is a companion matrix associated with L̃.

2.3. From theory to practice. We recall that the aim of this paper is to explain how one

can compute theoretically the Galois group of a difference equation of order 3. In practice

we may also need to make more assumptions on the difference field (k, ϕ) in order to

compute effectively the difference Galois groups:

• Assume that k is an effective field, i.e. that one can compute representatives of

the four operations +,−,×, / and one can effectively test whether two elements

of k are equal.

• Assume that, given a homogeneous linear difference system [A] with A ∈ GLn(k),

we can effectively find a basis of its rational solutions, i.e. its solutions Y ∈ kn.

• Assume that given a difference operator L, if L admits at least one right factor

of order one, then we are able to compute effectively one of such right factors.

When C = Q, for the cases (S, Q, M), the two first points are satisfied. One can find

some references for the second point in this table:

cases (S) (Q) (M) (E)

ref. [Abr95, AB98, vH98, AB01] [Abr95, AB01, Abr02] [CDDM18] [DR15, Com22]

Note that in the elliptic case the second point is not satisfied, unless considering the case

n = 2, see [DR15] (note that the latter is concerned by the more general problem of solving

Riccati equations), or when the framework is modified, see for instance [Com22]. Thus, in

that case, our algorithm may not lead to a systematic computation of the difference Galois

group. It will reduce the computation to the determination of rational solutions of certain

linear difference equations that may be complicated to solve concretely. Throughout this

paper, we will emphasize which kind of equations we have to be able to solve.

We saw in Section 2.2 that the study of the irreducibility of the Galois groups is closely

related to the factorisation of the difference operator. From Lemma 2.5, when we look at

a right factor of order one, we have to solve a Riccati equation of the form

n∑
i=0

ai

i−1∏
j=0

ϕj(α) = 0.
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When C = Q, we are able to compute right-factors of order 1 in the cases (S,Q,E)

but we want to emphasis that the complexity is exponential, in the order of the equation,

contrary to the search of rational solutions, whose complexity is polynomial. Here-below,

one can find some references for these computations:

cases (S) (Q) (E)

ref. [Pet92, CvH06, ABPS21] [APP98, CvH06, ABPS21] [DR15, Com22]

For the Mahler case, the computation of Riccati solution is a work in progress by the first

author of this paper, Chyzak, Dumas and Mezzarobba.

Example 2.7. Let us now present the strategy of [ABPS21] to show that the difference

Galois group of (1.1) over C(z1/∗) is irreducible, which is equivalent to show that the

corresponding operator has no factor of order 1. We point out the fact that C(z1/∗) is not
an effective field but the strategy still work in that case. Assume that t ̸= 0. Let us begin

by proving that there is no right factor of order one. Let

L = a0 + a1ϕ+ a2ϕ
2 + a3ϕ

3

be the q-difference operator corresponding to (1.1), and let L∨ be its dual. By [ABPS21,

Lemma 3], For any α ∈ k× there exist λ ∈ C×, ℓ ∈ N∗ and unitary b, c, r ∈ C[z1/ℓ] \ {0}
such that

α = λ
b

c

ϕ(r)

r
and

• gcd(b, ϕk(c)) = 1 for all k ∈ {0, 1, 2};
• gcd(b, r) = 1;

• gcd(c, ϕ(r)) = 1.

Using this, one can deduce by [ABPS21, Lemma 3] that if ϕ− α is a right factor of order

1 of L for some α ∈ k×, then, in the above decomposition for α, we have b|a0, c|ϕ−2(a3),

and

(2.4) λ3a3bϕ(b)ϕ
2(b)ϕ3(r)+λ2a2bϕ(b)ϕ

2(c)ϕ2(r)+λa1bϕ(c)ϕ
2(c)ϕ(r)+a0cϕ(c)ϕ

2(c)r = 0.

The strategy to decide whether L has a right factor of order one is the following. For

every unitary pair (b, c) ∈
(
C[z1/ℓ] \ {0}

)2
such that b|a0, c|ϕ−2(a3), we decide whether

there exist λ ∈ C× and r ∈ C[z1/ℓ] \ {0} such that (2.4) holds. If we find a solution then

we have a right factor of order one, otherwise there is no right factor of order one. Here,

since a0 = q3z, a3 = t are monomials in z (recall that t ̸= 0) the choices are very limited.

The only possibilities for the pair (b, c) are (zd, 1), with 0 ⩽ d ⩽ 1. Recall that deg(a3) = 0,

deg(a2) = 2, deg(a1) = deg(a0) = 1. The degrees of the terms in (2.4) are respectively

given by

3d+ deg r(z), 2 + 2d+ deg r(z), 1 + d+ deg r(z), 1 + deg r(z)

and a direct calculation shows that, for 0 ⩽ d ⩽ 1, 2 + 2d + deg r(z) is greater than the

remaining ones, whence there is no solution. We proceed similarly with the dual for the
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left factor of length one.

L∨ = a3(q
−3z)σ−3

q + a2(q
−2z)σ−2

q + a1(q
−1z)σ−1

q + a0(z)

= σ−3
q

(
a3(z) + a2(qz)σq + a1(q

2z)σ2
q + a0(q

3z)σ3
q

)
Here the possible pairs for (b, c) are (1, zd), with 0 ⩽ d ⩽ 1. The degrees of the terms of

the equation corresponding to (2.4) are

1 + deg r(z), 1 + d+ deg r(z), 2 + 2d+ deg r(z), 3d+ deg r(z).

Again, for 0 ⩽ d ⩽ 1, 2 + 2d+ deg r(z) is greater than the remaining ones.

3. Galois groups of difference systems

Consider the difference system (2.1) and let G ⊂ GLn(C) be its Galois group. In order

to compute G, we follow the strategy of the seminal paper [Hen98], that is, computing

a gauge transformation T ∈ GLn(k) such that [ϕ(T )AT−1] is in reduced form. We will

study the following cases (definitions of reducible and imprimitive groups are given in the

corresponding section):

• G is reducible;

• G is irreducible and imprimitive;

• G is irreducible and primitive.

Before considering the particular case of difference equations of order 2 and 3, the aim of

this section is to prove some general results for the Galois groups G of systems of the form

(2.1), with n ⩾ 2.

3.1. The reducible case. Let us treat the case where the Galois group G is reducible. By

Lemma 2.4, G is reducible if and only if there exist T ∈ GLn(k), A1 ∈ GLm(k), m < n,

and A2, A3 matrices of convenient size, such that

ϕ(T )AT−1 =

(
A1 A2

0 A3

)
.

The strategy of reduction will follow the one given in the differential setting in [DW19,

Section 5]. Let us assume that the bloc diagonal system [D], where D :=

(
A1 0

0 A3

)
, is in

reduced form and let us see how to reduce [A]. In general, [D] is not in reduced form and

we have to reduce the bloc diagonal system with a bloc diagonal gauge transformation.

For small orders, we will see how to do this in practice but we want to emphasize the fact

that reducing the bloc diagonal system is a hard task in general. We denote by GD the

Galois group of [D].

Lemma 3.1. Let B be a matrix of the form

(
A1 A2

0 A3

)
where D :=

(
A1 0

0 A3

)
is such

that the system [D] is in reduced form. A matrix T ∈ GLn(k) such that
[
ϕ(T )BT−1

]
is

reduced can be found of the form T =

(
Idm ⋆

0 Idn−m

)
.
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Proof. It is the same kind of results as [DW19, Theorem 2.4] adapted to this difference

context. We denote by G (respectively by GD) the Galois group of [B] (respectively of

[D]). Let H be the smallest algebraic group of upper bloc triangular matrices such that

B ∈ H(k). It is an algebraic group whose elements are of the form

(
H1 H2

0 H3

)
. We denote

by HD the group whose matrices are of the form

(
H1 0

0 H3

)
where

(
H1 H2

0 H3

)
∈ H for

a matrix H2, it is a block diagonal algebraic group. Let HU (respectively GU ) be the

subgroup of H (respectively G) whose elements are of the form

(
Idm ⋆

0 Idn−m

)
. We

have HD ∼ H/HU . Let us prove that the group HD is the smallest algebraic group

such that D ∈ HD(k). Indeed, considering the projection morphism π : H → HD,

where we identify H/HU and HD, if there exists an algebraic group H̃D ⊊ HD such that

D ∈ H̃D(k), then the algebraic group H̃ := π−1(H̃D) ⊊ H is such that B ∈ H̃(k), which

contradicts the minimality of H. Since [D] is in reduced form, we have GD = HD. Let

R =

(
R1 R2

0 R3

)
∈ H(k) be such that the system

[
ϕ(R)BR−1

]
is in reduced form. Let

RD :=

(
R1 0

0 R3

)
∈ HD(k) = GD(k).

Since GD ∼ G/GU , there exists Q2, such that Q :=

(
R1 Q2

0 R3

)
∈ G(k). Therefore

Q−1 =

(
R−1

1 ⋆

0 R−1
3

)
∈ G(k). A gauge transformation of ϕ(R)BR−1 ∈ G(k) by the

matrix Q−1 ∈ G(k) gives an element of G(k). Hence
[
ϕ(T )BT−1

]
is in reduced form

where T := Q−1R =

(
Idm ⋆

0 Idn−m

)
. □

Remark 3.2. As in [DW19, Section 5], we may also consider the case where the system

has more than two blocs. More precisely, consider a bloc triangular system [A], where

A =


A1 A1,2 . . .

A2 A2,3

. . .

0 Ak

 .

Let us assume that the bloc diagonal system [D], with D = Diag(A1, . . . , Ak), is in reduced

form. Then, the proof of Lemma 3.1 may be adapted in that context and we find a gauge

transformation T =


Id ⋆ . . . ⋆

0 Id
. . .

...
. . . ⋆

Id

 ∈ GLn(k) such that [ϕ(T )AT−1] is in reduced

form.
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3.2. The imprimitive case. Let G be an algebraic subgroup of GLn(C). We say that

G is imprimitive if there exists a nontrivial decomposition into C-vector spaces Cn =

V1 ⊕ · · · ⊕ Vk, such that any element of G induces a permutation between the Vi. We say

that G is primitive otherwise.

Consider G, an imprimitive group and let us write a decomposition Cn = V1⊕ · · ·⊕Vk.

The image of V1 under an element of G is of the form Vj , where Vj and V1 have the

same dimension. If we further assume that G is irreducible, for all 1 ⩽ j ⩽ k, there

exists σ ∈ G, such that σ(V1) = Vj , proving that each Vj has the same dimension and

thus is a divisor of the order n of the equation (2.1). Therefore, when n is prime and G is

irreducible, the situation is simplified since every space has dimension one. In what follows,

we give information on the irreducible imprimitive groups that may occur as difference

Galois groups when the order n of the system (2.1) is prime (see Theorem 3.5). Moreover,

det(G) indicates which one of this information correspond to the Galois group G (see

Proposition 3.7). More precisely, Theorem 3.5 and Proposition 3.7 imply the following

result.

Theorem 3.3. Assume that n is a prime number. Let G ⊂ GLn(C) be an imprimitive

irreducible group such that G/G0 is finite and cyclic.

(i) If det(G) = C∗ then G0 ∼ (C∗)n and G/G0 ∼ Z/nZ.
(ii) If det(G) = Z/νZ then G0 ∼ (C∗)n−1 and G/G0 ∼ Z/nsZ where

s =

{
ν/n if ν ∈ nN∗

ν otherwise.

At the end of this section, we explain how to compute a reduced form and a gauge

transformation which gives this reduced form (see Proposition 3.10).

3.2.1. Imprimitive groups that may occur. Let us now describe the possible irreducible

imprimitive groups that may occur as difference Galois groups when n is prime. Let us

begin by an elementary lemma that will be used several times. Note that the assumption

n prime is not required for this lemma.

Lemma 3.4. Let G ⊂ GLn(C) be an irreducible group and let H ◁ G be such that G/H is

finite and cyclic. Then, H is not composed only of dilatations.

Proof. By contradiction, assume that H is composed only of dilatations. Since G/H is

finite and cyclic, there exists a matrix F such that G = H ∪HF ∪ · · ·∪HFm−1 for some

positive integer m. The matrix F is triangularisable and since H is formed by dilatations,

it implies that there is a common basis of triangularisation of every elements of G, which

contradicts the fact that G is irreducible. □

For (α1, . . . , αn) ∈ (C∗)n, let

En(α1, . . . , αn) :=


α1

. . .

αn−1

αn

 = Diag(α1, . . . , αn)En,
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where En =


1

. . .

1

1

 is the companion matrix with last row (1, 0, . . . , 0). To

lighten the notations, we will denote it E. For (α1, . . . , αn) ∈ (C∗)n, let ᾱ := (α1, . . . , αn)

and let Πᾱ :=
∏n

i=1 αi. Note that (En(α1, . . . , αn))
n = (Πᾱ)Idn. Let Mℓ be the set of

invertible matrices of the form Diag(α1, . . . , αn)E
ℓ. Note that M0 is composed of diagonal

matrices. The following theorem gives information on the possible groups that may occur

as Galois groups.

Theorem 3.5. Assume that n is a prime number. Let G ⊂ GLn(C) be an imprimitive

irreducible group such that G/G0 is finite and cyclic. Then, up to a conjugation, one of

the following holds:

(i) G =

n−1⋃
ℓ=0

Mℓ. In that case G0 ∼ (C∗)n, G/G0 ∼ Z/nZ and det(G) = C∗.

(ii) There exists a positive integer s such that

G ∩M0 = {Diag(α1, . . . , αn) | (Πα)s = 1}

and there exists M of the form En (α1, . . . , αn), where Πα = e2iπk/(ns) with

gcd(k, s) = 1, such that G/G0 is generated by M . In that case, we find that

G0 = {Diag(α1, . . . , αn) | Πα = 1} ∼ (C∗)n−1, G/G0 ∼ Z/nsZ and

(a) if n = 2 then det(G) = Z/(2s/ gcd(k + s, 2))Z;
(b) if n > 2 then det(G) = Z/(ns/ gcd(k, n))Z.

Proof. Up to a conjugation, G is a subgroup of
n⋃

ℓ=1

Mℓ. Since G is irreducible, it contains

a nondiagonal element thus there exists 0 < ℓ < n such that G contains an element of Mℓ.

Using that G is a group, G contains an element of Mkℓ for all k ∈ Z. Since n is prime,

for all 0 ⩽ k′ < n, there exists an integer k such that kℓ = k′ mod n. This shows that G

contains an element of Mk′ , for all 0 ⩽ k′ < n. Let D be the diagonal elements of G. It

induces an algebraic subgroup of n copies of the multiplicative group.

Assume first that D is equal to the group of invertible diagonal matrices. Since the

latter is connected, G0 = D. Thus, G contains all the invertible diagonal elements. Since G

contains an element of Mk′ for all 0 ⩽ k′ < n and contains M0 it follows that G =

n−1⋃
ℓ=0

Mℓ.

This is the first case.

Assume now that D is strictly included in the group of invertible diagonal matrices.

Since G ⊂
n⋃

ℓ=1

Mℓ, we have G0 ⊂ D. There exists s := (s1, . . . sn) ∈ Zn, where the si are

not all zero, such that the diagonal matrices Diag(α1, . . . , αn) in G satisfy
n∏

j=1
α
sj
j = 1. We

have
∑n

j=1 sj ln(|αj |) = 0.



ON THE COMPUTATION OF THE DIFFERENCE GALOIS GROUPS OF ORDER THREE EQ. 13

Consider a matrix P := En (β1, . . . , βn) ∈ M1 ∩G . We have

P.Diag (αn, α1, α2, . . . , αn−1) = Diag (α1, α2, . . . , αn) .P .

Therefore, if Diag (α1, α2, . . . , αn) ∈ G then Diag (αn, α1, α2, . . . , αn−1) ∈ G. Iterating this

computation, we obtain that the nonzero vector X = (ln(|α1|), . . . , ln(|αn|))t is a solution

of

BX = 0, where B =


s1 s2 · · · sn

sn s1
. . .

...
...

. . .
. . . s2

s2 · · · sn s1

 .

Note that B =
∑n−1

ℓ=0 sℓ+1E
ℓ is a circulant matrix. Since En is the identity, E is

diagonalisable with eigenvectors Xk = (1, e2ikπ/n, . . . , e2ik(n−1)π/n)t, 0 ⩽ k ⩽ n− 1, and its

eigenvalues are the nth roots of unity:

EXk = e2ikπ/nXk .

These eigenvectors are also eigenvectors for every polynomial in E, in particular they

are eigenvectors of B. Since E is diagonalisable, there exists P ∈ GLn(C) such that

E = PD0P
−1, where D0 = Diag(1, e2iπ/n, . . . , e2i(n−1)π/n) is a diagonal matrix. Since

BX = 0 and P−1BP =
∑n−1

ℓ=0 sℓ+1D
ℓ
0, the diagonal matrix

∑n−1
ℓ=0 sℓ+1D

ℓ
0 has a nontrivial

kernel, that is, one of its diagonal entries is zero: there exists 0 ⩽ k0 ⩽ n − 1 such

that
∑n−1

ℓ=0 sℓ+1e
2iℓk0π/n = 0. The nth roots of unity satisfy zn = 1 and we have

zn−1 = (z−1)Φn(z) where Φn(z) := 1+z+ · · ·+zn−1. Because n is prime, the cyclotomic

polynomial Φn is irreducible on Z. If k0 > 0, then we must have s := s1 = · · · = sn ̸= 0.

Let us prove by contradiction that we work in the case k0 ̸= 0.

By contradiction, assume that k0 = 0. Then,
∑n−1

ℓ=0 sℓ+1 = 0. Recall that the si are

not all zero. In particular, we cannot be in the situation where s1 = · · · = sn. From what

precedes, this implies that for all k ̸= 0 we have Xk /∈ ker(B). Thus, ker(B) = Vect(X0)

and in particular X ∈ Vect(X0), that is ln(|α1|) = · · · = ln(|αn|). We obtain

(3.1) |α1| = . . . = |αn| .

Let g := gcd(s1, . . . , sn), s
′
i := si

g and βi := αg
i for i ∈ {1, . . . , n}. Since

n∏
j=1

α
sj
j = 1,

we have
n∏

j=1
β
s′j
j = 1. Thus, there exists ℓ0 ∈ Z such that

∑n
j=1 s

′
j arg(βj) = 2πℓ0.

Moreover, since gcd(s′1, . . . , s
′
n) = 1, by the Bézout’s identity, there exist u1, . . . , un ∈ Z

such that
∑n

j=1 ujs
′
j = 1. We can replace arg(βj) with arg(βj)− 2πujℓ0 (new choices for

the determinations of arguments), also called arg(βj) to lighten notations. With these

new choices,
∑n

j=1 s
′
j arg(βj) = 0. Thus Y := (arg(β1), . . . , arg(βn))

t satisfies BY = 0. As

before (with Y instead of X), we obtain

(3.2) arg(β1) = . . . = arg(βn) .

From (3.1) and (3.2), we have αg
1 = . . . = αg

n . Thus, in that case, there exists g ∈ N∗

such that D ⊂ {Diag(α1, . . . , αn) ∈ GLn (C) | αg
1 = . . . = αg

n}. Let us prove that the
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connected component of the identity of D is composed by dilatations. Indeed, with the

equality αg
1 − αg

j = (α1 − αj)(α
g−1
1 + αg−2

1 αj + ... + α1α
g−2
j + αg−1

j ) = 0, we find that

{Diag(α1, . . . , αn) ∈ GLn (C) | αg
1 = . . . = αg

n} contains the closed set α1 = . . . = αn.

The latter is composed by dilatations matrices and contains the connected component of

the identity. This implies that the elements of G0 are dilatations, which is a contradiction

because of Lemma 3.4 (with H := G0 in this lemma). Therefore, k0 > 0 so we must have

s := s1 = · · · = sn ̸= 0.

We proved that D ⊂ Ds := {Diag(α1, . . . , αn) | (Πα)s = 1} and, since Ds = D−s, we

can assume that s is positive. If D is a strict subgroup of Ds, the same reasoning implies

that D ⊂ Ds′ for some s′ that divides s. So, up to taking a smaller positive integer s, we

may assume that D = Ds. In this case, G0 = D1.

Let F := Diag(α1, . . . , αn)E
ℓ ∈ Mℓ∩G be a non diagonal element of G which generates

the finite group G/G0 (we can choose in particular 0 < ℓ < n). Since n is prime, n is

the smallest integer such that Fn is diagonal. We have Fn = Diag(Πᾱ, . . . ,Πᾱ) thus it

satisfies (Πᾱ)sn = 1. We have Πᾱ = e2iπk/sn for some integer 0 ⩽ k < sn and Fn has

to generate the diagonal elements of G. This shows that (Πᾱ)n has to be a primitive sth

root of unity, that is, k has to be coprime with s. Since G is defined up to an isomorphism

and since F is conjugate to Diag(αµ(1), . . . , αµ(n))E where µ ∈ Sn is a permutation, we

can assume (up to renumbering the αi’s, which can be done since we just have conditions

on Πᾱ) that F = Diag(α1, . . . , αn)E = En (α1, . . . , αn).

The determinant of the diagonal elements is a power of e2iπ/s. When n > 2, n

is odd and the determinant of F is e2iπk/sn. When n = 2 the determinant of F is

−e2iπk/2s = e2iπ(k+s)/2s. The results on the determinant follow. □

Remark 3.6. When n = 2, we recover [Hen98, Lemma 4.8].

Let us now see how det(G) helps us to distinguish the cases in Theorem 3.5 and

compute s. We will explain how to compute det(G) in Section 4.1.

Proposition 3.7. Assume that n is prime. Let G ⊂ GLn(C) be an imprimitive irreducible

group such that G/G0 is finite and cyclic. The following statements holds.

• det(G) = C∗ if and only if G is the group in the case (i) of Theorem 3.5.

• If det(G) = Z/νZ, with ν ∈ nN∗, then s = ν/n. where s is defined in Theorem 3.5.

• Otherwise, s = ν.

Proof. If det(G) = C∗ we are clearly in the case case (i) of Theorem 3.5. The converse is

also true.

Assume that n ̸= 2, thus by Theorem 3.5, det(G) = Z/(sn/ gcd(k, n))Z. We know the

integers n, ν := (sn/ gcd(k, n)) and we want to compute s. Note that, since n is prime,

ν = sn/ gcd(k, n) is either sn or s. Let us prove that ν = s if and only if gcd(ν, n) = 1. If

ν = s then gcd(k, n) = n and, since k is coprime with s, this implies gcd(n, s) = 1, that

is gcd(ν, n) = 1. Obviously, if ν = sn then gcd(ν, n) = n. Therefore, either gcd(ν, n) = 1

and s = ν or gcd(ν, n) = n and s = ν/n.

In the case n = 2, k is replaced by k + s. Note that k + s is coprime with s and the

same conclusion holds. □



ON THE COMPUTATION OF THE DIFFERENCE GALOIS GROUPS OF ORDER THREE EQ. 15

3.2.2. How to compute a reduced form? First, we prove a result which is useful in what

follows.

Proposition 3.8. Let n be a prime number and let H ⊂ GLn(C) be an irreducible group.

Assume that K is not composed only of dilatations and K ◁H. If H is a primitive group,

then K is an irreducible group.

Proof. Let us prove by contradiction the irreducibility of K. If K is not irreducible, there

exists a vector space V ⊊ Cn of minimal dimension ν > 0 such that K(V ) = V . We

denote by V1, . . . , Vk vector subspaces of Cn in direct sum such that ν = dim(Vj) and

K(Vj) = Vj . We then have V1 ⊕ · · · ⊕ Vk ⊂ Cn. Thereofore νk < n and k is bounded.

Then, without loss of generalities we may assume that k is maximal, meaning that for all

V ′ ⊂ Cn, with dim(V ′) = ν and K(V ′) = V ′, V ′ is not in direct sum with V1 ⊕ · · · ⊕ Vk.

We claim that V1 ⊕ · · · ⊕ Vk = Cn. To the contrary, assume that V1 ⊕ · · · ⊕ Vk ⊊ Cn.

By irreducibility of H, there exist H ∈ H and ℓ ∈ {1, . . . , k} such that Y := H (Vℓ),

whose dimension is ν, is not included in V1⊕· · ·⊕Vk. Since K is a normal subgroup of H,

KH = H K. In particular, KY = Y so Y is stable under K. Since Y ∩ (V1 ⊕ · · · ⊕ Vk)

is stable under K, by minimality of the dimension ν, it follows that the dimension of

Y ∩ (V1 ⊕ · · · ⊕ Vk) is either 0 or ν. In the first case, this proves that Y is in direct sum

with V1 ⊕ · · · ⊕ Vk and, in the second case, this proves that Y ⊂ V1 ⊕ · · · ⊕ Vk. In both

situations this is a contradiction thus V1 ⊕ · · · ⊕ Vk = Cn. Hence νk = n and, since n is

prime, we have k = n and ν = 1. At this stage, we know that V1 ⊕ · · · ⊕ Vn = Cn with

dim(Vj) = 1 and K(Vj) = Vj for all j ∈ {1, . . . , n}. This implies that K is composed of

diagonal matrices in a basis B induced by V1, . . . , Vn.

Let us prove by contradiction that the common eigenspaces of the matrices in K

must have the same dimension. Indeed, if it is not the case and if W1, . . . ,Wℓ are the

eigenspaces of K of maximal dimension, then we have W := W1 ⊕ . . . ⊕ Wℓ ⊊ Cn (it is

not Cn because we assume that there exists at least an eigenspace which has an another

dimension). Since K(Wi) = Wi for all i ∈ {1, . . . , n} and KH = H K for all H ∈ H, we

have K(H (Wi)) = H (Wi). Thus, by maximality of dim(Wi) = dim(H (Wi)), H (Wi)

is a common eigenspace of the matrices in K, that is H (Wi) = Wj for a certain j.

Hence H (Wi) ⊂ W , which proves that H(W ) ⊂ W (and taking the dimension, we have

H(W ) = W ), in contradiction with the irreducibility of H.

We proved that the matrices in K are diagonal and we see that the common eigenspaces

of the matrices in K have the same dimension. Since, the direct sum of these eigenspaces is

Cn, this dimension must divides n, which is a prime number. Thus, this dimension is 1 or

n. In the second case, it means that the matrices in K are dilatations, a contradiction with

a hypothesis on K. In the first case, the eigenspaces are V1, . . . , Vn. As before, if H ∈ H,

for all i ∈ {1, . . . , n}, we have K(H (Vi)) = H (Vi). Thus, H (Vi), whose dimension is

1, is included in an eigenspace of K so H (Vi) = Vj for a j ∈ {1, . . . , n}. We obtain in

this case that any element of H induces a permutation between the Vi, which contradicts

the fact that H is primitive. In both situations, we obtain a contradiction. Finally, K is

irreducible. □
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The rest of the subsection is devoted to the computation of the reduced form. We

recall that A[ℓ] := ϕℓ−1(A) . . . A and G[ℓ] is the difference Galois group of the system

ϕℓ(Y ) = A[ℓ]Y . Let us first give a criterion of imprimitivity.

Proposition 3.9. Assume that G is irreducible and n prime. It is imprimitive if and only

if G[n] is diagonal.

Furthermore, when G is imprimitive, the Riccati equation corresponding to ϕn(Y ) =

A[n]Y admits a solution d ∈ k∗ and we may assume that the (1, 1) entry of A[n] is d.

Proof. If G is imprimitive but irreducible, there exists a gauge transformation T such that

B := ϕ(T )AT−1 is an invertible matrix of the form


b1

. . .

bn−1

bn

, where bi ∈ k∗,

and such that [B] is in reduced form. Then, ϕn(T )A[n]T
−1 = ϕn−1(B) . . . ϕ(B)B =: B[n] is

diagonal. By Theorem 2.1, this proves that the Galois group of ϕn(Y ) = A[n]Y is diagonal.

Let us prove the converse. Assume that the Galois group of ϕn(Y ) = A[n]Y is diagonal,

and G is irreducible. Consider a basis of Cn such that the matrices of G[n] are diagonal.

Then, from Lemma 2.3, G0 = G0
[n] thus G

0 is diagonal. Let us prove that G is imprimitive.

From Lemma 3.4 (where H := G0), the group G0 is not composed only of dilatations.

Thus, by Proposition 3.8 (applied to H := G and K := G0), if G is a primitive group then

G0 is irreducible, which contradicts the fact that G0 is diagonal. Thus, G is imprimitive.

The statement on the Riccati equation is a consequence of Remark 2.6. □

Assume that G is irreducible, imprimitive and n is prime. By Proposition 3.9, the

Riccati equation corresponding to ϕn(Y ) = A[n]Y admits a solution d ∈ k∗. Assume that

we are able to compute a reduced form of ϕ(y) = dy, that is compute f ∈ k∗ such that

ϕ(y) = dϕ(f)
f y is reduced. The goal of what follows is to prove the following result.

Proposition 3.10. Assume that G is irreducible, imprimitive and n prime. The

system ϕ(Y ) = AY is equivalent to ϕ(Y ) = En(1, . . . , 1, d)Y . The system ϕ(Y ) =

En(1, . . . , 1, f
−1, ϕ(f)d)Y is a reduced form of ϕ(Y ) = En(1, . . . , 1, d)Y with reduction

matrix Diag(1, . . . , 1, f).

Let us begin by proving a technical lemma.

Lemma 3.11. Assume that G is irreducible, imprimitive and n prime. Then, there exist

T ∈ GLn(k) and u ∈ k∗ such that ϕ(T )AT−1 =


1

. . .

1

u

, that is, ϕ(T )AT−1 =

En(1, . . . , 1, u).

Proof. This is inspired by [Hen98, Section 4.2]. By Theorem 2.1, there exist T ∈ GLn(k)

and u1, . . . , un ∈ k∗ such that ϕ(T )AT−1 = En(u2, . . . , un, u1). LetD := Diag (a1, . . . , an).
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We have the following equality

ϕ(D)En(u2, . . . , un, u1)D
−1 = En

(
ϕ(a1)u2

a2
, . . . ,

ϕ(an−1)un
an

,
ϕ(an)u1

a1

)
.

If we perform the gauge transformation D := Diag(1, u2, 1, . . . , 1), we may reduce

to the case u2 = 1. Then, if n > 2, performing the gauge transformation D :=

Diag(1, 1, ϕ(u2)u3, 1, . . . , 1), we may reduce to the case u3 = 1. Iterating this process

allows at the end to reduce to the case u2 = · · · = un = 1 and we change u1 to

u := u1ϕ(un)ϕ
2(un−1) . . . ϕ

n−1(u2). □

Let us continue the proof of Propositon 3.10. By the previous lemma, we have

that [A] is equivalent to En(1, . . . , 1, u), therefore ϕn(Y ) = A[n]Y is equivalent to

ϕn(Y ) = Diag(u, ϕ(u), . . . , ϕn−1u)Y . Unfortunately, we are not yet able to compute u.

By Proposition 3.9, there exists a diagonal system ϕn(Y ) = DY , that is equivalent to

ϕn(Y ) = A[n]Y with (1, 1) entry d. We write

D := Diag(d1, d2, d3, . . . , dn)

where we set d1 := d. Let us now see that we may reduce to the case where di = ϕi−1−i1(d)

for an integer i1 ∈ {1, . . . , n}.

Lemma 3.12. There exists a gauge transformation X and an integer i1 ∈ {1, . . . , n} such

that

(3.3) ϕn(X)DX−1 = Diag(ϕ−i1(d), . . . , ϕn−1−i1(d)) .

Proof. Note that there exists an invertible matrix Z such that ϕn(Z)DZ−1 =

Diag(u, ϕ(u), . . . , ϕn−1u). Let Zi,j be the entries of Z. Since Z is invertible, for all j

there exists ij ∈ {1, . . . , n} such that Zij ,j ̸= 0. We can moreover assume that the ij
are distinct. Taking the (ij , j)-coefficient in ϕn(Z)D = Diag(u, ϕ(u), . . . , ϕn−1(u))Z yields

ϕn(Zij ,j)dj = ϕij−1(u)Zij ,j . Thus, for all j ∈ {1, . . . , n}, there exist ij ∈ {1, . . . , n} and

fj ∈ k∗ such that

(3.4) ϕn(fj)dj = ϕij−1(u)fj .

For j = 1 in (3.4), we have ϕi1−1(u) = ϕn(f1)d1
f1

thus ϕij−1(u) = ϕn(ϕij−i1 (f1))ϕ
ij−i1 (d1)

ϕij−i1 (f1)
.

Therefore, from (3.4), setting gj :=
fj

ϕij−i1 (f1)
, we obtain

ϕn(gj)dj =
ϕn(fj)dj

ϕn(ϕij−i1(f1))
=

ϕij−1(u)fj
ϕn(ϕij−i1(f1))

= ϕij−i1(d1)gj .

Applying ϕi1 to this equality, we proved that there exists an invertible diagonal matrix Z0

and distinct integers i1, . . . , in ∈ {1, . . . , n} such that

ϕn(Z0)ϕ
i1(D)Z−1

0 = Diag(ϕi1(d1), . . . , ϕ
in(d1)) .

Thus there exists a permutation matrix Z1 such that

ϕn(Y )ϕi1(D)Y −1 = Diag(d, . . . , ϕn−1(d)) with Y := Z1Z0 .
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Thus,

ϕn(X)DX−1 = Diag(ϕ−i1(d), . . . , ϕn−1−i1(d)) where X := ϕ−i1(Y ) .

□

Thus, at this stage, we know the existence of i1 ∈ {1, . . . , n} such that ϕn(Y ) = A[n]Y

is equivalent to

ϕn(Y ) = Diag(ϕ−i1(d), ϕ1−i1(d), . . . , ϕn−1−i1(d))Y .

Since the system ϕn(Y ) = Diag(ϕ−i1(d), ϕ1−i1(d), . . . , ϕn−1−i1(d))Y is diagonal, we may

assume that we have a diagonal fundamental matrix of solutions U . This matrix can be

taken of the form U = Diag(y, ϕ(y), . . . , ϕn−1(y)). Then,

ϕ(U) = FU, where F :=


1

. . .

1

ϕ−i1(d)

 = En(1, . . . , 1, ϕ
−i1(d)) .

By construction, F[n] = Diag(ϕ−i1(d), ϕ1−i1(d), . . . , ϕn−1−i1(d)). We thus have two ϕn-

systems ϕn(Y ) = A[n]Y and ϕn(Y ) = F[n]Y , that are equivalent and we want to prove

that they are equivalent as ϕ-system. This is the goal of the next lemma.

Lemma 3.13. Let F ∈ GLn(k) be such that the systems ϕn(Y ) = F[n]Y and ϕn(Y ) = A[n]Y

are equivalent. Then, the systems [A] and [F ] are equivalent.

Proof. Let Y and Z be two fundamental matrices of solutions of ϕ(Y ) = AY and

ϕ(Y ) = FY respectively. Thus, ϕn(Y) = A[n]Y and ϕn(Z) = F[n]Z. By hypothesis,

there exists T ∈ GLn(k) such that X := TY is a solution of ϕn(Y ) = F[n]Y . This implies

that P := X−1Z is a ϕn-constant matrix. By [DH21, Lemma 3.1], the entries of P belong

to C so we have

A = ϕ(Y)Y−1 = ϕ(T−1)ϕ(X )X−1T = ϕ(T−1)ϕ(Z)Z−1T = ϕ(T )−1FT.

□

Let us finish the proof of Proposition 3.10. From what precedes, [A] is equivalent to [F ]

where F = En(1, . . . , 1, ϕ
−i1(d)). Using the following lemma and the fact that ϕ(1) = 1,

we obtain that this system is equivalent to [J ], where J := En(1, . . . , 1, d).

Lemma 3.14. Let J ∈ GLn(k) and ℓ ∈ N. The systems [ϕℓ(J)] and [ϕℓ+1(J)] are equivalent.

Proof. It follows from the fact that ϕℓ+1(J) = ϕ(X)ϕℓ(J)X−1 with X := ϕℓ(J). □

Thus, we have that [A] and [J ] are equivalent systems. Now, we perform the

gauge transformation S = Diag(1, . . . , 1, f) to find that [A] is equivalent to ϕ(Y ) =

En(1, . . . , 1, f
−1, dϕ(f))Y . It remains to check that this system is in a reduced form.

By Theorem 2.1, there exists a reduction matrix of the form T := Diag(f1, . . . , fn)E
k.

Note that T may be the identity. We are going to apply Theorem 3.5 and look at the

product of the nonzero entries of B := ϕ(T )En(1, . . . , 1, f
−1, dϕ(f))T−1. The latter is
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ϕ(f1×···×fn)
f1×···×fn

ϕ(f)
f d. Since ϕy = ϕ(f)

f dy is in reduced form, the algebraic group generated

by ϕ(f1×···×fn)
f1×···×fn

ϕ(f)
f d is bigger than the algebraic group generated by ϕ(f)

f d. Since [B] is

reduced, by Theorem 2.1, it is also smaller, proving that the algebraic group generated by
ϕ(f1×···×fn)
f1×···×fn

ϕ(f)
f d is the algebraic group generated by ϕ(f)

f d. By Theorem 2.1 again, this

shows that ϕ(Y ) = En(1, . . . , 1, f
−1, dϕ(f))Y is already reduced.

Example 3.15. Let us go back to the example (1.1) and recall, see Example 2.7, that the

difference Galois group G is irreducible. Assume that t ̸= 0. Instead of applying the

criterion of Proposition 3.9 to show that G is imprimitive, let us use a shortcut. We refer

to [RSZ13, Section 2.2] for more details on what follows. We define the Newton polygon

of a q-difference operator L =
∑

i aiϕ
k as the convex hull in R2 of

{(i, j) | i, j ∈ Z, j ⩾ val(ai(z))} ⊂ R2

where val : C((z)) → Q ∪ {+∞} denotes the z-adic valuation. The Newton polygon

is invariant by an analytic change of variables. By Lemma 3.11, when n is prime, if

the difference Galois group of an equation is irreducible and imprimitive, then the lower

bound of the Newton polygon is delimited by the segment from (0, val(u)) to (n, 0). In

Example (1.1), the lower part is composed of the segment delimited by (0, 1) and (1, 0)

and the segment delimited by (1, 0) and (3, 0), see Figure 1. Since G is irreducible, see

Example 2.7, we find that G is primitive.

(0, 1)

(1, 0) (2, 0) (3, 0)

•

• • •

Figure 1. The Newton polygon of the operator associated with U(z, t).

3.3. The primitive case. In this section, we assume that G is irreducible, primitive, and n

is prime. We want to prove that the same holds for G0 and D(G0) where D(G0) denotes

the derived group of G0. Note that G0 is a connected normal subgroup of G and D(G0)

is a connected normal subgroup of G0.

First, we recall the following result given in [ADH21, Lemma 4.2].

Lemma 3.16. If K ⊂ GLn(C) is a connected and irreducible algebraic group, then K is

also primitive.

Lemma 3.17. Let n be a prime number. If H ⊂ GLn(C) is an irreducible and primitive

group, then the derived subgroup of H, denoted by D(H), is not composed only of

dilatations.

Proof. By contradiction, assume that D(H) is composed only of dilatations. In this

case, for all G ,H ∈ H, there exists α ∈ C∗ such that G H G−1H −1 = αIdn, that is

G H = αH G . The group H is irreducible so there exists H0 ∈ H having an eigenspace W
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of maximal dimension ν < n, otherwise H would be composed of dilatations contradicting

its irreducibility. Let V be the direct sum of the eigenspaces of H0 of dimension ν. From

the previous equality and the fact that H0(W ) = W , we obtain that

(3.5) ∀G ∈ H, H0(G (W )) = G (W ) .

Thus, G (W ) is also an eigenspace of H0 of dimension ν for all G ∈ H so H(W ) ⊂ V .

Therefore, H(V ) ⊂ V (in fact, taking the dimension, it is an equality of vector spaces)

which implies that V = Cn by irreducibility of H. Hence ν divides n. Since n is a

prime number and ν < n, we have ν = 1. This means that H0 is a diagonal matrix

with distinct eigenvalues and we denote by V1, . . . , Vn its eigenspaces. However, from (3.5)

with W := V1, we obtain that every G ∈ H induces a permutation between the Vi, which

contradicts the fact that H is primitive. □

Proposition 3.18. Assume that n is prime and G ⊂ GLn(C) is an irreducible and primitive

group. Then, the same holds for G0 and D(G0) and we may write G0 = Z(G0).D(G0)

where Z(G0) denotes the center of G0.

Proof. We recall that G0 is a connected normal subgroup of G and D(G0) is a connected

normal subgroup of G0.

From Lemma 3.4 (with H := G0), G0 is not composed only of dilatations. Thus, by

Proposition 3.8 (with H := G and K := G0), G0 is irreducible. Using Lemma 3.16, G0 is

also primitive. Then, the irreducibility of D(G0) follows from Lemma 3.17 (with H := G0)

and Proposition 3.8 (with H := G0 and K := D(G0)). Thanks to Lemma 3.16, D(G0) is

also primitive.

By [SS98, Corollary 8.1.6], any connected algebraic group H satisfies H ∼ Z(H).D(H),

which proves that G0 = Z(G0).D(G0). □

4. Galois groups of equations of order one and diagonal systems

4.1. Galois groups of equations of order one. We consider the equation of order one

(4.1) ϕ(y) = αy α ∈ k∗.

Let us now see how to compute the Galois group G of this difference equation. Recall

that since G ⊂ GL1(C) is an algebraic group, either G is C∗, or it is isomorphic to Z/ℓZ
for some ℓ ∈ N∗.

Proposition 4.1. We have G ∼ Z/ℓZ if and only if there exists ζ, a primitive ℓth root of

unity and a nonzero solution f ∈ k∗ of ϕ(y) = (ζ/α)y. In that situation, ζ = αϕ(f)
f , and

[ζ] is a reduced form of [α] with a gauge transformation (f).

Proof. Since the Galois group G of (4.1) is an algebraic subgroup of C⋆, it is a finite cyclic

group or the multiplicative group C⋆. Any equivalent equation of (4.1) is of the form

ϕ(y) = αϕ(f)
f y with f ∈ k⋆. Therefore, from Theorem 2.1, if G is a finite cyclic group

of order ℓ ∈ N∗ then there exist f ∈ k⋆ and ζ, a primitive ℓth root of unity, such that

ζ = αϕ(f)
f .
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Conversely, assume that there exist f ∈ k⋆ and ζ, a primitive ℓth root of unity, such

that ζ = αϕ(f)
f . From Theorem 2.1, G is contained in Z/ℓZ. Then, G ∼ Z/ℓ1Z where

ℓ1 divides ℓ. Then, there exist g ∈ k⋆ and ζ1, a primitive ℓ1th root of unity, such that

ζ1 = αϕ(g)
g . This implies αℓ1 = gℓ1/ϕ(gℓ1). Let h := (f/g)ℓ. Thus, ϕ(h) = h so h ∈ C∗.

Since C is algebraically closed, there exists c ∈ C∗ such that f = cg (with cℓ = h). Using

this equality, we obtain ζ = ζ1 and since ζ is a primitive ℓth root of unity, ℓ = ℓ1. □

Remark 4.2. Since det(G) is the Galois group of ϕ(y) = det(A)y, an equation of order 1,

we may now compute det(G) if we are able to reduce the difference equations of order 1.

Example 4.3. Consider the difference equation (1.1) and let G be its difference Galois group

over C(z1/∗). Assume that t ̸= 0. We want to compute det(G). We have to compute

the difference Galois group of ϕ(y) = −q3z
t y = αy over C(z1/∗). By Proposition 4.1,

det(G) is finite if and only if there exists ζ, a primitive ℓth root of unity, and a nonzero

solution f ∈ k∗ of ϕ(y) = (ζ/α)y. But the valuation of α at z = 0 is 1, proving that

ζ/α must have valuation −1. Since for f ∈ k∗, f and ϕ(f) have the same valuation, the

equation ϕ(f) = (ζ/α)f with f ∈ k∗, and ζ a root of unity, has no solutions. Therefore,

det(G) = C∗.

4.2. Galois groups of diagonal systems. For more details on what follows, we refer to

[VdPS97, Section 2.2]. Let us consider a diagonal system

(4.2) ϕ(Y ) = Diag (α1, . . . , αn)Y

where Diag (α1, . . . , αn) ∈ GLn (k) is the diagonal matrix whose nonzero entry at the line

i is αi. By Theorem 2.1, the Galois group is an algebraic subgroup of the n-dimensional

torus T . The matrices of G are of the form Diag(c1, . . . , cn). We recall that a character

on T is a morphism χ : T → C⋆. It is of the form χm(z1, . . . , zn) = zm1
1 . . . zmn

n with

m := (m1, . . . ,mn) ∈ Zn. Since an algebraic subgroup of T is the intersection of the

kernels of some characters on T , we have to find the m ∈ Zn such that cm1
1 . . . cmn

n = 1

for all Diag(c1, . . . , cn) ∈ G. By Theorem 2.1, a gauge transformation which reduces the

system will be diagonal, denoted by Diag(f1, . . . , fn). Thus, the difference Galois group

of (4.2) is the intersection of the kernels of the χm for all m ∈ Zn such that there exist

f1, . . . , fn ∈ k∗ satisfying

(4.3)

(
ϕ(f1)

f1
α1

)m1

× . . .×
(
ϕ(fn)

fn
αn

)mn

= 1 .

The question of how to solve (4.3) depends on the examples (see one example in [VdPS97,

Section 2.2]). In general it is a complicated task.

5. Galois groups of equations of order two

Consider a difference equation of order 2

ϕ2(y) + a1ϕ(y) + a0y = 0, where ai ∈ k and a0 ̸= 0.

Let

L := ϕ2 + a1ϕ+ a0 ∈ k
〈
ϕ, ϕ−1

〉
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be the corresponding difference operator and let G ⊂ GL2(C) be its Galois group.

We want to compute G. An algorithm in the cases (Q), (S), (E), (M) is presented in

[Hen97, Hen98, DR15, Roq18] respectively.

Reducible case. We first decide whether L has a right factor of order one. This is the case

if and only if G is reducible. Recall, see Lemma 2.5, that it is equivalent to the existence

of a solution α of the Riccati equation ϕ(y)y + a1y + a0 = 0.

Assume first that L is reducible and let us write L = (ϕ−β)(ϕ−α). Then, α is a solution

of the Riccati equation ϕ(y)y+a1y+a0 = 0, and β is determined by αβ = a0. The difference

equation is equivalent to ϕ(Y ) = AY where A =

(
α 1

0 β

)
. We now follow the strategy of

Section 3.1. As in the diagonal case, we reduce the diagonal system ϕ(Y ) =

(
α 0

0 β

)
Y

with a diagonal matrix D. Let B := ϕ(D)AD−1, with B =

(
α′ γ′

0 β′

)
. By [Hen98,

Lemma 4.4], either [B] is already reduced, or a reduced form is

(
α′ 0

0 β′

)
. We now have

to decide if there exists t ∈ k such that T =

(
1 t

0 1

)
satisfies ϕ(T )B =

(
α′ 0

0 β′

)
T .

Note that this is equivalent to

γ′ + ϕ(t)β′ = α′t.

So we just have to decide if an equation of order 1 has a solution t in k or not. If such

a t exists, then the reduction matrix is given by TD, and a reduced form is

(
α′ 0

0 β′

)
.

Otherwise, the reduction matrix is given by D and a reduced form is

(
α′ γ′

0 β′

)
.

Imprimitive case. Assume now that G is irreducible. It is imprimitive if and only if the

difference Galois group of ϕ2(Y ) = A[2]Y is diagonal. We use the reducible case (with ϕ

replaced by ϕ2) to check this property. In that case we are able to compute d ∈ k∗, solution

of the Riccati equation corresponding to ϕ2(Y ) = A[2]Y . We now follow Proposition 3.10.

The system [A] is equivalent to ϕ(Y ) =

(
0 1

d 0

)
Y . Let us compute a reduced form of

ϕ(y) = dy, that is compute f ∈ k∗ such that ϕ(y) = dϕ(f)
f y is reduced. Then, a reduced

form is given by

(
0 f−1

ϕ(f)d 0

)
and a reduction matrix is given by Diag(1, f) .

Primitive case. Assume that G is irreducible and primitive. By [Hen98, Section 4.4], either

G = GL2(C), or there exists an integer k such that

G = {M ∈ GL2 (C) | det(M)k = 1}.
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Recall that a0 = det(A) and the algebraic group det(G) is the difference Galois group of

ϕ(y) = a0y, a system of order 1. Let f ∈ k∗ be such that ϕ(y) = a0
ϕ(f)
f y is reduced

with Galois group det(G). Then, we perform, as in [Hen98, Section 4.4], the gauge

transformation T = Diag(f, 1) to obtain a system [B]. Since det(B) = a0
ϕ(f)
f , and

ϕ(y) = a0
ϕ(f)
f y is reduced with Galois group det(G), we find that B ∈ G(k). Then,

B is a reduced form and T is the reduction matrix.

6. Galois groups of equations of order three

Consider a linear difference equation of order 3

ϕ3(y) + a2ϕ
2(y) + a1ϕ(y) + a0y = 0, where ai ∈ k and a0 ̸= 0.

Let

L := ϕ3 + a2ϕ
2 + a1ϕ+ a0 ∈ k

〈
ϕ, ϕ−1

〉
be the corresponding difference operator and let G ⊂ GL3(C) be its Galois group. We

want to compute G.

6.1. Reducible case. We follow the strategy explained in Section 3.1 to treat the case

where G is reducible. By [ADH21, Lemma 4.4], G is reducible if and only if the operator

L admits a right factor. The right factor can have order one or two. So G is reducible

if and only if the operator admits a right or left factor of order one. Recall that up to

consider the dual, we may reduce to the case where there is a right factor of order 1.

Recall, see Lemma 2.5, that the existence of a right factor of order one is equivalent to the

existence of a solution α ∈ k of the Riccati equation ϕ2(y)ϕ(y)y+ a2ϕ(y)y+ a1y+ a0 = 0.

Assume that L admits a right factor of order one. Let us write L as L̃(ϕ − α) where

L̃ := ϕ2 − βϕ− γ. Then, the system [AL] is equivalent to the system

ϕ(Y ) =

(
α 1 0

0 A2

)
Y ,

where the matrix A2 corresponds to the equation of order two L̃y = 0 (that is A2 = A
L̃
).

From the order one and order two cases, we know how to compute T1 ∈ GL1(k) and

T2 ∈ GL2(k) such that the systems whose matrices are ϕ(T1)αT
−1
1 and ϕ(T2)A2T

−1
2 are

in reduced form. Let us consider

A :=

(
ϕ(T1) 0

0 ϕ(T2)

)(
α 1 0

0 A2

)(
T1 0

0 T2

)−1

.

This matrix A is of the form

(
ϕ(T1)αT

−1
1 ⋆

0 ϕ(T2)A2T
−1
2

)
. The first step consists in

reducing the bloc diagonal system [D] where D :=

(
ϕ(T1)αT

−1
1 0

0 ϕ(T2)A2T
−1
2

)
. Let GD

be the Galois group of this system, let G1 be the Galois group of [ϕ(T1)αT
−1
1 ] and let G2

be the Galois group of [ϕ(T2)A2T
−1
2 ]. The algebraic group GD is an algebraic subgroup

of G1 ×G2. We explain the reduction on a case-by-case approach with respect to G2. We
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will see that in each situation, reducing [D] is equivalent to reducing a diagonal system

whose reduction is explained in Section 4.2. Theorem 6.1 summarize the results we are

going to prove for this first step.

Theorem 6.1. • Assume that G2 is composed of diagonal matrices. We can assume that

D is diagonal. Then, we have to reduce a diagonal system and the reduction is explained

in Section 4.2.

• Assume that G2 is reducible and the first case does not hold. We can assume that D

is upper triangular. Then, the reduction matrix is the diagonal matrix T that reduces the

diagonal system [Diag(a, b, d)], where a, b, d are the diagonal entries of D.

• Assume that G2 is imprimitive and irreducible. We can assume that ϕ(T2)A2T
−1
2 is an

anti-diagonal matrix. Then D[2] is diagonal. The reduction matrix that reduces [D] is the

matrix T that reduces the diagonal ϕ2-system ϕ2(Y ) = D[2]Y .

• Assume that G2 is primitive and irreducible. The reduction matrix is given by

T := Diag(r1, r2, 1), where Diag(r1, r2) is the reduction matrix of the diagonal system

ϕ(Y ) =

(
ϕ(T1)αT

−1
1 0

0 det(ϕ(T2)A2T
−1
2 )

)
Y .

Let us now prove the theorem.

Proof. • Assume that G2 is formed by diagonal matrices. Then, D is diagonal, GD is an

algebraic group of diagonal matrices and the reduction is explained in Section 4.2.

• Assume thatG2 is reducible but not formed by diagonal matrices. Up to a conjugation,

we may assume that G2 is formed by upper triangular matrices. By the classification of

such nondiagonal reducible algebraic groups that can be found in [Hen98, Lemma 4.4], the

upper triangular entry can be any element of C∗. We can assume that the matrix D is of

the form

a 0 0

0 b c

0 0 d

 with c ̸= 0. Let us first reduce the diagonal system [Diag(a, b, d)].

This will change the elements a, b, c, d but, simplifying notations, let us denote by a, b, c, d

the new ones. With Remark 3.2 and Theorem 2.1, we are looking for a reduction matrix

of the form T :=

1 0 0

0 1 t

0 0 1

. We denote by [D′] a reduced system, D′ =

a 0 0

0 b c′

0 0 d

 for

a c′ ∈ k. The only non-trivial equality in ϕ(T )D = D′T is on the (2, 3) entry:

c+ dϕ(t) = bt+ c′.

We have c′ ̸= 0, otherwise the gauge transformation

(
1 t

0 1

)
would transform

[ϕ(T2)A2T
−1
2 ] into a diagonal system, a contradiction. By [NvdPT+08], for all c′ ̸= 0,

the algebraic group generated by

(
b c

0 d

)
and

(
b c′

0 d

)
are the same. Since the (1, 1)
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entry of the algebraic group generated by

⋆ 0 0

0 ⋆ ⋆

0 0 ⋆

 does not affect the (2, 3) entry, we

deduce that the algebraic group generated by

a 0 0

0 b c

0 0 d

 and

a 0 0

0 b c′

0 0 d

 are the same

so we may take t = 0 and c′ = c and the system is already reduced.

• When G2 is irreducible and imprimitive, up to a conjugation, it is of the form

G2 = G2,D ∪G2,A, where G2,D is formed by diagonal matrices and G2,A by anti-diagonal

matrices. We then have that GD is a union of diagonal matrices and matrices of the form⋆ 0 0

0 0 ⋆

0 ⋆ 0

. We can assume that the matrix D is of the form

a 0 0

0 0 b

0 c 0

 since otherwise

G2 would be reducible.

Remark 6.2. Note that D[2] is a diagonal matrix. By Lemma 2.3, the connected components

of the identity of the difference Galois groups of [D] and [D[2]] are the same. So if we are

only interested in computing the connected component of G we may just reduce the diagonal

system [D[2]], see Section 4.2 for more details.

Assuming we know how to compute the Galois group of a diagonal system, we are able

to compute a reduction matrix P ∈ GL3(k) such that the system ϕ2(Y ) = ϕ2(P )D[2]P
−1Y

is reduced. Consider B := ϕ(P )DP−1, we have B[2] = ϕ2(P )D[2]P
−1 thus [B[2]] is reduced.

Let us prove that the system [B] is already reduced. Let H be the smallest algebraic group

such that B ∈ H(k). We have GD ⊂ H (property of Galois groups, see Theorem 2.1). By

Lemma 2.3, the Galois group of the ϕ2-system [B[2]] and the Galois group of the ϕ-system

[B] have the same connected component. Since [D[2]] and [B[2]] have the same Galois

group, and [B[2]] is reduced we find H0 = G0
D. We recall that H is the smallest algebraic

group such that B ∈ H(k). Then, H/H0 = H/G0
D is generated by a single element, so it

is cyclic (and finite since it is an algebraic group, see [HSS16, Lemma 3.5]). Since GD/G
0
D

is finite cyclic,

GD/G
0
D ∼ Z/m′Z, H/G0

D ∼ Z/n′Z,
for integers m′, n′. With Theorem 2.1 and Lemma 2.3, there exists k such that B[k] ∈
G0

D(k).

Since, GD ⊂ H, we have m′ ⩽ n′. By Theorem 2.1, there exists P1 ∈ H(k) such that

Bred = ϕ(P1)BP−1
1 ∈ GD(k) is reduced. Since H is an algebraic group defined over C,

the equation over C between the entries of B and ϕk(B), k ∈ Z, are the same. Then, the

class of ϕk(B) in H/G0
D is independent of k.

Then, the integer m′ (resp. n′) is the smallest such that we have the inclusion

Bred,[m′] = ϕm′−1(Bred)× · · · ×Bred ∈ G0
D(k) (resp. B[n′] ∈ G0

D(k)). Since G0
D is

composed of diagonal matrices and B,Bred are not diagonal (otherwise G2 would be

reducible), we find that m′ = 2m, n′ = 2n for some integers m,n. We have

Bred,[2m] = ϕ2m(P1)B[2m]P
−1
1 ∈ G0

D(k). Since G0
D is the smallest algebraic group such
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that B[2n] ∈ G0
D(k) and since [B[2]] is reduced as a ϕ2-system, we have n ⩽ m, proving

that m′ = n′. Then GD = H and [B] is already reduced.

• When G2 is irreducible and primitive, by [Hen98, Section 4.4], either G2 = GL2(C),

or there exists an integer k such that

G2 = {M ∈ GL2 (C) | det(M)k = 1}.

We recall that det(G2) is the difference Galois group of ϕ(Y ) = dY with d :=

det
(
ϕ(T2)A2T

−1
2

)
. Let R := Diag(r1, r2) be a reduction matrix of the bloc diagonal

system ϕ(Y ) = BY where B :=

(
ϕ(T1)αT

−1
1 0

0 d

)
. Then,

ϕ(R)BR−1 = Diag(ϕ(r1T1)α(T1r1)
−1︸ ︷︷ ︸

:=B1

, ϕ(r2)dr
−1
2︸ ︷︷ ︸

:=B2

) .

Let us prove that T := Diag(r1, r2, 1) is a reduction matrix of [D]. Let H be the

minimal algebraic group such that Bred := ϕ(T )DT−1 ∈ H(k). We set Bred =(
Bred,1 0

0 Bred,2

)
, with Bred,⋆ of convenient size. By construction, we have Bred,1 = B1

and det(Bred,2) = B2. Note that GD is a subgroup of G1 × det(G2). SL2(C), where the

identification G2 ∼ det(G2).SL2(C) is made via the map M = Diag(det(M ), 1)M ′, with

det(Diag(det(M ), 1)) = det(M ), and M ′ ∈ SL2(C). Furthermore, since G2 is irreducible

and primitive, GD contains {1} × SL2(C). Consider the map

ξ : G1(k)× det(G2).SL2(k) → (k∗)2

(A,B) 7→ (A,det(B)) .

Let {1} × SL2 ⊂ H1 ⊊ H2 ⊂ G1 × G2 be two algebraic groups. Since the kernel of ξ is

{1} × SL2(k), we have ξ(H1(k)) ⊊ ξ(H2(k)). Furthermore, ξ is injective on the set of

algebraic subgroups of (G1 ×G2)(k) containing {1} × SL2(k).

By Theorem 2.1, we find that GD ⊂ H so that we have ξ(GD(k)) ⊂ ξ(H(k)). Since

R := Diag(r1, r2) is a reduction matrix of the bloc diagonal system ϕ(Y ) = BY , we have

ξ(H(k)) ⊂ ξ(GD(k)), and then ξ(GD(k)) = ξ(H(k)). From the above injectivity property,

GD(k) = H(k). Then T := Diag(r1, r2, 1) is a reduction matrix of [D]. □

Thus, in all cases, we should be able to reduce the block diagonal system [D] and find

an associated reduction matrix, denoted by T ′.

The next step consists in reducing the system [A]. We will see that finding the reduction

matrix is equivalent to finding vector solutions in k of ϕ-linear systems with coefficients

in k that we will explicit. We summarize these results in Theorem 6.5. We consider

B := ϕ(T ′)AT ′−1.
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The matrix B is of the form

(
D1 Ã

0 D2

)
. By construction, the difference Galois group of

[B] is G, so let us compute the latter. We write BD :=

(
D1 0

0 D2

)
. Recall that GD is

the Galois group of [BD], which is a reduced system thanks to the first step. The Galois

group G is conjugated to a subgroup of{(
C1 c1 c2
0 C2

)∣∣∣∣∣
(

C1 0

0 C2

)
∈ GD, c1, c2 ∈ C

}
= GD ⋉ U,

where U =


1 c1 c2
0 1 0

0 0 1

∣∣∣∣∣c1, c2 ∈ C

 is isomorphic to two copies of the additive group.

By Lemma 3.1, there exists T :=

(
1 X

0 Id2

)
∈ GL3(k) such that [ϕ(T )BT−1] is reduced.

Let F := ϕ(T )BT−1. We have F =

(
D1 A′

0 D2

)
where A′ = −XD1 + Ã + ϕ(X)D2, that

is,

Ã+ ϕ(X)D2 = XD1 +A′.

Let GU = G ∩ U . It is an algebraic subgroup of U so it is of dimension 0, 1 or 2.

Lemma 6.3. The dimension of the algebraic group GU is 0 if and only if there exists X ∈ k2

such that

(6.1) Ã+ ϕ(X)D2 = XD1.

In this case [F ] = [BD] is a reduced system equivalent to [B] with the gauge transformation

T :=

(
1 X

0 Id2

)
and the Galois group G is GD.

Proof. From Theorem 2.1, the dimension of GU is 0 if and only if A′ = (0 0). □

Lemma 6.4. Assume that the dimension of GU is not 0. If the dimension of GU is 1 then

D2 is a triangular matrix (lower or upper triangular, including the diagonal matrices). If

it is the case, we can assume that D2 is a lower triangular matrix and three cases occur:

• Case where D2 is lower triangular but not diagonal. In this case

G =

{(
C1 c 0

0 C2

)∣∣∣∣∣
(

C1 0

0 C2

)
∈ GD, c ∈ C

}
.

• Case where D2 is diagonal but not a dilatation. In this case, G is the same group as

before or

{(
C1 0 c

0 C2

)∣∣∣∣∣
(

C1 0

0 C2

)
∈ GD, c ∈ C

}
, depending if there is a solution in k

of some linear equations with coefficients in k (see equations (6.3) or (6.4)).
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• Case where D2 is a dilatation. In this case,

G =

{(
C1 λc µc

0 C2

)∣∣∣∣∣
(

C1 0

0 C2

)
∈ GD, c ∈ C

}
.

where λ, µ ∈ C2 \ {(0, 0)} can be explicited, see (6.5).

In each case, the proof gives an explicit gauge transformation and a reduced system.

Proof. Let Y be such that h =

(
1 Y

0 Id2

)
∈ GU . For g =

(
ag Cg

0 Bg

)
∈ G, let us com-

pute ghg−1 ∈ GU . We write ghg−1 =

(
1 Z

0 Id2

)
, so that we have

(
ag Cg

0 Bg

)(
1 Y

0 Id2

)
=(

1 Z

0 Id2

)(
ag Cg

0 Bg

)
. Then, agY +Cg = Cg+Z Bg proving that ghg

−1 =

(
1 agY B−1

g

0 Id2

)
∈

GU . If the dimension of GU is 1 then agY B−1
g = cY for some c ∈ C∗. Taking the trans-

position, we find (B−1
g )tY t = c′Y t for some c′ ∈ C∗. So Y t is an eigenvector of any

elements (B−1
g )t. This means that the elements Bg are all conjugated to lower triangular

matrices (or upper triangular matrices) and Y t is necessarily a common eigenvector. Since

[F ] is a reduced system, D2 is also a triangular matrix. Thus, if GU has dimension 1 then

D2 is a triangular matrix.

Let us assume that GU has dimension 1 thus D2 is a triangular matrix and, up to

conjugation, we can assume that D2 is lower triangular. In what follows, we denote by Ã1

and Ã2 the entries of Ã. We distinguish three cases:

• Case where D2 is lower triangular but not diagonal. We set D2 =

(
d1 0

d3 d4

)
. In this

case, the common eigenvectors of the elements (B−1
g )t for g ∈ G are Y t with Y :=

(
f 0

)
where f ∈ C, thus the system [B] is equivalent to the system [F ] where F is of the form(
D1 f 0

0 D2

)
, for a certain f ∈ k∗, thanks to a gauge transformation T :=

1 x1 x2
0 1 0

0 0 1

.

Recall that Ã+ϕ(X)D2 = XD1 +A′. Since the second entry of A′ has to be 0, we obtain

(6.2) Ã2 + ϕ(x2)d4 = D1x2.

From Theorem 2.1, this implies that

G ⊂

{(
C1 c 0

0 C2

)∣∣∣∣∣
(

C1 0

0 C2

)
∈ GD, c ∈ C

}
.

Since G = GD ⋉GU , we obtain that the previous inclusion is an equality.

• Case where D2 is diagonal but not a dilatation. We set D2 = Diag(d1, d4). Up to

a conjugation, we have GU =


1 c 0

0 1 0

0 0 1

 , c ∈ C

 or GU =


1 0 c

0 1 0

0 0 1

 , c ∈ C

.
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Using the same notations as before, we obtain that GU is the first one, resp. the second

one, if there exists a solution y ∈ k of the equation

Ã2 + ϕ(y)d4 = D1y ,(6.3)

resp. of the equation

Ã1 + ϕ(y)d1 = D1y .(6.4)

Not that only one of these two equations has a solution in k because if it is not the case,

the solutions x1, x2 are such that X := (x1 x2) ∈ k2 is a solution of (6.1), a contradiction

since the dimension of GU is not 0. With the same reasoning as before, we obtain that

the Galois group G is{(
C1 c 0

0 C2

)∣∣∣∣∣
(

C1 0

0 C2

)
∈ GD, c ∈ C

}
or

{(
C1 0 c

0 C2

)∣∣∣∣∣
(

C1 0

0 C2

)
∈ GD, c ∈ C

}
,

if GU is respectively the first or the second algebraic group.

• Case where D2 is a dilatation. We set D2 = dId2 with d ∈ k∗. Let λ, µ ∈ C not all

zero such that GU =


1 λc µc

0 1 0

0 0 1

 , c ∈ C

. From Lemma 3.1, since G = GD ⋉ GU ,

there exists T :=

(
1 X

0 Id2

)
such that ϕ(T )B = FT , where [F ] is reduced with

F =

(
D1 λf µf

0 D2

)
, f ∈ k∗. This is equivalent to

Ã+ ϕ(X)D2 = D1X +
(
λf µf

)
,

that is, {
dϕ(x1) = D1x1 − Ã1 + λf

dϕ(x2) = D1x2 − Ã2 + µf

where x1, x2 are the coordinates of X. Taking µ times the first line minus λ times the

second, we find that x = µx1−λx2 is solution of dϕ(x) = D1x−µÃ1+λÃ2. We then find

that this is equivalent to the fact that the vector Y :=

λ

µ

x

 is solution of

(6.5) ϕ(Y ) =

 1 0 0

0 1 0

Ã2d
−1 −Ã1d

−1 D1d
−1

Y.

Conversely, any nonzero solution of the latter system in k3 will give a reduction matrix,

and a reduced form. □

Let us summarize the results proved in Lemma 6.3 and Lemma 6.4.

Theorem 6.5. If the equation (6.1) has a solution then the Galois group G is GD. If this

equation has no solution then we have the following cases :
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• if D2 is a triangular matrix but not diagonal, up to a conjugation we assume that

it is lower triangular, and if the equation (6.2) has a solution then

G =

{(
C1 c 0

0 C2

)∣∣∣∣∣
(

C1 0

0 C2

)
∈ GD, c ∈ C

}
.

• if D2 is a diagonal matrix but not a dilatation and if (6.3) (the same equation as

(6.2)) or (6.4) has a solution then G is the previous group or respectively{(
C1 0 c

0 C2

)∣∣∣∣∣
(

C1 0

0 C2

)
∈ GD, c ∈ C

}
.

• if D2 is a dilatation and (6.5) has a solution then

G =

{(
C1 λc µc

0 C2

)∣∣∣∣∣
(

C1 0

0 C2

)
∈ GD, c ∈ C

}
where λ, µ ∈ C not all zero are given by a solution of (6.5).

• if none of these three cases occur then G = GD ⋉ U (in this case, the dimension

of GU is 2).

6.2. Imprimitive case. Assume now that G is irreducible and treat the case where G is

imprimitive. This case is solved in Section 3.2. It is imprimitive if and only if the difference

Galois group of ϕ3Y = A[3]Y is diagonal. We use the reducible case (with ϕ replaced by

ϕ3) to check this property. In that case we are able to compute d ∈ k∗, solution of the

Riccati equation corresponding to ϕ3Y = A[3]Y . We now follow Proposition 3.10. Let us

compute a reduced form of ϕ(y) = dy, that is compute f ∈ k∗ such that ϕ(y) = dϕ(f)
f y

is reduced. Then, a reduced form is given by

 0 1 0

0 0 f−1

ϕ(f)d 0 0

 with reduction matrix

Diag(1, 1, f).

6.3. Primitive case. Assume now that G is irreducible and primitive. Let D(G0) be the

derived subgroup of G0 that is irreducible and primitive by Proposition 3.18. By definition,

D(G0) ⊂ SL3(C). By [SU93, Section 2.2], either D(G0) is SL3(C), or it is isomorphic

to PSL2(C). Since SO3(C) is also a primitive subgroup of SL3(C), it is isomorphic to

PSL2(C). The matrices commuting with SL3(C) (resp. SO3(C)) are dilatations and we

find that Z(G0), the center of G0, is isomorphic to an algebraic subgroup of C∗. Since it

is connected, it is then C∗ or {1}. By Proposition 3.18, G0 = Z(G0).D(G0).

When D(G0) = SL3(C) we find that either G0 = GL3(C), or G0 = SL3(C). Since

G/G0 is cyclic, we deduce that either G = GL3(C), or there exists an integer k, which

is the order of the group G/G0, such that G = {M ∈ GL3 (C) | det(M)k = 1}. Then

G = Z(G).D(G), where Z(G) is composed by dilatations matrices and D(G) = SL3(C).

Assume now that D(G0) = SO3(C). Then either G0 ∼ C∗.SO3(C), or G0 = SO3(C).

Moreover, since G/G0 is cyclic, it is abelian and since the derived group D(G) is the

smallest subgroup H of G such that G/H is abelian, we have D(G) ⊂ G0. Then

SO3(C) = D(G0) ⊂ D(G) ⊂ G0 ⊂ C∗.SO3(C). The normalizer of SO3(C) in GL3(C) is
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C∗.SO3(C) and the same holds for C∗.SO3(C). Since the normalizer of D(G) in G, which

is G, is included in the normalizer of D(G) in GL3(C), we find that G ⊂ C∗.SO3(C).

Thus, SO3(C) ⊂ G ⊂ C∗.SO3(C). Then, either G ∼ C∗.SO3(C), or there exists k ∈ N∗,

such that G ∼ Uk.SO3(C), where Uk denote the group of all k-th roots of unity. Hence

G = Z(G).D(G), where Z(G) is composed by dilatations matrices and D(G) = SO3(C).

To summary, we have proved the following result:

Proposition 6.6. Assume that G is irreducible and primitive. Then, G = Z(G).D(G),

where Z(G) is included in the group of scalar matrices and D(G) is either SL3(C) or

SO3(C).

Remark 6.7. If D(G) = SL3(C), then Z(G) = {λId3 where λ3 ∈ det(G)} . Recall that
det(G) is the Galois group of an equation of order one ϕ(y) = det(A)y.

Assume now D(G) = SO3(C). If det(G) = C∗, then Z(G) = C∗. If det(G) = Un with

gcd(n, 3) ̸= 1, then Z(G) = U3n. In the case det(G) = Un with gcd(n, 3) = 1, we have

Z(G) = U3n or Un.

We want to give a criterion to decide whether D(G) = SO3(C) or not. Let us prove the

following lemma.

Lemma 6.8. Assume that G is irreducible and primitive. Let k be the algebraic closure of

k. We may extend ϕ on the latter. The following facts are equivalent.

• D(G) = SO3(C).

• there exist T ∈ GL3(k), λ ∈ k∗ and B ∈ SO3(k) such that

(6.6) ϕ(T )AT−1 = λB.

• there exist T ∈ GL3(k), λ ∈ k
∗
and B ∈ SO3(k) such that (6.6) holds.

Proof. Recall that G ∼ Z(G).D(G), where D(G) ∈ {SO3(C), SL3(C)} and Z(G) is

composed by dilatations matrices. By Theorem 2.1, D(G) = SO3(C) if and only if there

exist T ∈ GL3(k), λ ∈ k∗ and B ∈ SO3(k) such that (6.6) holds. So the first two items are

equivalent. If the second item holds, then the third item holds. Conversely assume that the

third item holds. Consider G, the Galois group over k. By Theorem 2.1, G ⊂ C
∗
.SO3(C).

By Galois correspondence, see [VdPS97, Chapter 1], G is a subgroup of G and G/G is

finite. Since G ∼ Z(G).D(G), where D(G) ∈ {SO3(C),SL3(C)}, this shows that D(G)

cannot be SL3(C). Then D(G) = SO3(C). □

The equation (6.6) is non linear and may be complicated to solve. Let us see how we

may reduce to a linear equation over k. For the sake of completeness, let us first prove a

well-known result that will be used in the sequel.

Lemma 6.9. Let K be a field of characteristic zero. Let X ∈ GLn(K) be a symmetric

matrix. Then, there exist F,D ∈ GLn(K) with D diagonal such that X = FDF t.

Proof. Let Ei,j be the square matrix of order n whose (i, j) entry is 1 and the other entries

are 0. For i ̸= j, let Ti,j be the corresponding transvection matrix, that is Idn + Ei,j . If

we consider Ti,jX(Ti,j)
t we make the following operations: the column Ci of X is replaced
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by Cj +Ci and then the line Li is replaced by Li + Lj . Take i = 1. This shows that X1,1

is replaced by X1,1 +Xj,1 +X1,j +Xj,j = X1,1 + 2X1,j +Xj,j .

Let us see how to reduce to the case X1,1 ̸= 0. Assume X1,1 = 0. If there exists j > 1

such that Xj,j ̸= 0 then we replace X by PXP t where P = E1,j + Ej,1 +
∑

k ̸=1,j

Ek,k is

the permutation matrix which exchanges the lines 1 and j. We have P = P−1 = P t. If

Xj,j = 0 for all j, we consider j such that X1,j ̸= 0 (such j exists otherwise the first line

is only composed of 0 entries, contradicting the fact that X is invertible). Let us perform

T1,jX(T1,j)
t so that X1,1 is replaced by X1,1+2X1,j+Xj,j = 2X1,j ̸= 0. So we may reduce

to the case where X1,1 ̸= 0.

For i ∈ {2, . . . , n}, let T := Idn + αiEi,1 with αi := −Xi,1/X1,1. Computing

TXT t, Xi,1 is replaced by αiX1,1 + Xi,1 = 0 thus, as in a Gaussian Pivot, we force

X2,1 = · · · = Xn,1 = 0. We also have X1,2 = · · · = X1,n = 0 since the matrix obtained

remains symmetric. We repeat the procedure to the other lines and columns to find the

result. □

Toward an efficient way to check that (6.6) holds, let us prove the following.

Lemma 6.10. The following facts are equivalent.

• There exist T ∈ GL3(k), λ ∈ k
∗
and B ∈ SO3(k) such that (6.6) holds.

• There exist λ ∈ k
∗
, X ∈ GL3(k) such that X = Xt, and AXAt = λ2ϕ(X).

Proof. Let us prove that the first point implies the second. Let us assume the existence

of T ∈ GL3(k), λ ∈ k
∗
, and B ∈ SO3(k) such that (6.6) holds. Let us set P := T−1 and

note that P t is the inverse of T t. Using BBt = Id3 we find that (6.6) implies

ϕ(T )APP tAtϕ(T t) = λ2Id3.

The latter is equivalent to

APP tAt = λ2ϕ(PP t).

We obtain the result if we set X = PP t.

Conversely, assume that the second item holds. By Lemma 6.9, let us write X = FDF t

with matrices whose coefficients are in k. Since k is algebraically closed, F
√
D has

coefficients in k and we may write X = F
√
D(

√
D)tF t, where

√
D is any diagonal matrix

whose square is D. Let us perform ϕ(T )AT−1 where T ∈ GL3(k) is the inverse of F
√
D.

Note that X = T−1(T−1)t. It suffices to prove that B = ϕ(T )AT−1λ−1 ∈ SO3(k). Then,

BBt = λ−2ϕ(T )AT−1(T−1)tAtϕ(T t) = λ−2ϕ(T )AXAtϕ(T t).

We now use AXAt = λ2ϕ(X) to deduce that the latter equals ϕ(T )ϕ(X)ϕ(T t). With

X = T−1(T−1)t, we deduce that ϕ(T )ϕ(X)ϕ(T t) is the identity, that is B ∈ SO3(k). □

If we replace X by X ′ := X det(X)−1/3 ∈ SL3(k), we find AX ′At = det(A)2/3ϕ(X ′).

Indeed, the equality AXAt = λ2ϕ(X) is equivalent to

(6.7) AX ′At = λ2 det(X)−1/3 det(ϕ(X))1/3ϕ(X ′) .
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Taking the determinant in (6.7) and using that det(X ′) = 1, we have det(A)2 =

λ6 det(X)−1 det(ϕ(X)). We obtain the desired result thanks to (6.7) and this last equality.

With Lemma 6.8, and Lemma 6.9, we have proved the following result.

Proposition 6.11. Assume that G is irreducible and primitive. Then, D(G) = SO3(C) if

and only if there exists X ∈ SL3(k) such that X = Xt and AXAt = det(A)2/3ϕ(X).

Proposition 6.11 then reduces the criterion on D(G) to look at solutions in k of linear

ϕ-difference systems with coefficients in k. More precisely the condition X = Xt drops

the number of unknowns from 9 to 6. Solving a system in k is in general a complicated

task but in many examples, by studying the poles of the system for instance, we might be

able to prove that the system has no solutions, showing that D(G) ̸= SO3(C).

Let us now see how to compute the reduced form. First, assume that D(G) = SL3(C).

We compute det(G) as the difference Galois group of an order one system ϕ(y) = a0y with

reduction matrix f ∈ k∗, that is ϕ(y) = a0
ϕ(f)
f y is reduced with Galois group det(G).

Then, we perform, as in [Hen98, Section 4.4], the gauge transformation T = Diag(f, 1, 1)

to obtain a system [B]. Since det(B) = a0
ϕ(f)
f , and ϕ(y) = a0

ϕ(f)
f y is reduced with Galois

group det(G), we find that B ∈ G(k). Then, B is a reduced form and T is the reduction

matrix.

Now consider the case where D(G) = SO3(C). By Lemma 6.8, we know that

there exist T ∈ GL3(k), λ ∈ k∗ and B ∈ SO3(k) such that (6.6) holds. As above,

let us set X ′ = T−1(T−1)t det(T )2/3 ∈ SL3(k). Then, X ′ satisfies X ′ = (X ′)t and

AX ′At = det(A)2/3ϕ(X ′). Let us write X ′ = FDF t as in Lemma 6.9. Note that the proof

of Lemma 6.9 is constructive so F and D may be effectively computed. Let us perform

the gauge transformation ϕ(α(F
√
D)−1)A(α(F

√
D)−1)−1 where (F

√
D)−1 ∈ GL3(k) and

α ∈ k
∗
. From what precedes, all reduction matrices with coefficients in k are of this

form. Since there is a reduction matrix with coefficients in k, there is a choice of X ′ and

α such that the corresponding α(F
√
D)−1 has entries in k. Note that this procedure is

purely theoretical and not effective. So if α(F
√
D)−1 does not have entries in k for all

α ∈ k
∗
, we take another solutions X ′ with a corresponding α(F

√
D)−1 ∈ GL3(k). At this

stage, we have ϕ(α(F
√
D)−1)A(α(F

√
D)−1)−1 = βA0, with β ∈ k∗ and A0 ∈ SO3(k).

By Theorem 2.1 and Proposition 6.6, we find that a reduction matrix is of the form

α1α(F
√
D)−1, α1 ∈ k∗. We may compute α1 by reducing the system ϕ(y) = βy. Hence

the reduced form is ϕ(α1)
α1

βA0.

Example 6.12. Consider G the difference Galois group of (1.1) over C(z1/∗). Assume that

t ̸= 0. Assume by contradiction that D(G) = SO3(C). The eigenvalues of matrices of

SO3(C) are of the form (1, a±1), a ∈ C∗. Then, the eigenvalues of elements of G are for

the form (c, ca±1), c, a ∈ C∗. By [RS09, Section 2.4], combined with the computation of

the Newton polygon in Example 3.15, G contains the so-called theta torus, elements of the

form Diag(1, 1, d), d ∈ C∗. If the triple Diag(1, 1, d) is of the form (c, ca±1), then either

a = 1 = c = d, or a = c = −1 and d = −1. Then, Diag(1, 1, 2) can never be of the form

(c, ca±1), showing that D(G) ̸= SO3(C). Then D(G) = SL3(C).
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6.4. Summary. Let

L := ϕ3 + a2ϕ
2 + a1ϕ+ a0 ∈ k

〈
ϕ, ϕ−1

〉
and let G ⊂ GL3(C) be the Galois group of Ly = 0.

If the Riccati equation attached to L or the similar equation attached to L∨ has a

solution then G is reducible. Otherwise, it is irreducible.

When it is the reducible case, L or L∨ has a right factor of order 1 denoted by ϕ − α.

Consider the case where L has a right factor of order 1, the other situation is similar.

Therefore, up to an isomorphism, the Galois group G is the one of the system

ϕ(Y ) =

(
α 1 0

0 A2

)
Y .

We already know how to reduce the systems [α] and [A2] (order 1 and 2) and we denote

respectively by [β] and [B2] these reduced systems. We consider the system [A] which is

equivalent to this previous system with A of the form

(
β ⋆

0 B2

)
. To reduce the system

[A] and compute its Galois group, which is G up to an isomorphism, we proceed in two

steps:

(i) With Theorem 6.1, we reduce the bloc diagonal system [D] where D =

(
β 0

0 B2

)
and we find an associated reduction matrix denoted by T ′.

(ii) We reduce the system [B] where B := ϕ(T ′)AT ′−1. Doing this, we introduce some

linear equations and we know which is the group G if we know that there exists

a solution or not of these equations (see equations (6.1), (6.3), (6.4), (6.5))

When it is not the reducible case, we have to distinguish between the imprimitive case

and the primitive case. Let A := AL. We know that it is imprimitive if and only if the

difference Galois group of ϕ3Y = A[3]Y is diagonal. We use the reducible case (with ϕ

replaced by ϕ3) to check this property.

Finally, when it is irreducible and primitive, we have to distinguish between D(G) =

SO3(C) and D(G) = SL3(C). We have D(G) = SO3(C), if and only if there is a symmetric

solution over k
∗
of the linear difference equation AXAt = det(A)2/3ϕ(X).

Combining the facts proved in Examples 2.7, 3.15, 4.3, and 6.12, we then find the Galois

group of (1.1) over C(z1/∗):

Theorem 6.13. For all t ̸= 0, the difference Galois group of (1.1) over C(z1/∗) is GL3(C).

7. Application to the differential transcendence

Let k be a field of characteristic zero and (k, ϕ, ∂) be a C1-field with no proper finite

difference field extension, equipped with an automorphism ϕ, and a derivation ∂, that is an

additive morphism satisfying the Leibnitz rule ∂(fg) = ∂(f)g+f∂(g). Let us assume that

ϕ and ∂ commute. In our examples, we may take ∂ = ∂z (case S and E), and ∂ = z∂z (case

Q). In the Mahler case, we could adapt as in [DHR18] the framework with the derivation
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∂ = z∂z log(z) but this will complicate the exposition of a general criterion, so let us drop

the Mahler case in what follows.

Let us consider R, a ring extension of k such that ϕ and ∂ extend on R. We say that

f ∈ R is ∂-algebraic over k if there exists n ∈ N and a nonzero P ∈ k[X0, . . . , Xn] such that

P (f, . . . , ∂nf) = 0. We say that f is ∂-transcendent over k otherwise. In our examples, f

is ∂-algebraic over k if and only if it is ∂z-algebraic over k. Many proof of ∂-transcendence

of solutions of ϕ-equation are based on the difference Galois theory. Roughly speaking,

this kind of theorem says that if the difference Galois group is sufficiently big, then the

nonzero solutions of the linear equation are ∂-transcendent. Let f ∈ R∗ be a solution of

a3ϕ
3(y) + a2ϕ

2(y) + a1ϕ(y) + a0y = 0, where ai ∈ k and a0a3 ̸= 0.

Consider the dual
∑3

i=0 ϕ
−i(ai)ϕ

−i that is equivalent to

ϕ3(a0)ϕ
3(y) + ϕ2(a1)ϕ

2(y) + ϕ(a2)ϕ(y) + a3y = 0, where ai ∈ k.

Theorem 7.1. Let us assume that

• there is no u ∈ k such that

a3uϕ(u)ϕ
2(u) + a2uϕ(u) + a1u+ a0 = 0.

• there is no u ∈ k such that

ϕ3(a0)uϕ(u)ϕ
2(u) + ϕ2(a1)uϕ(u) + ϕ(a2)u+ a3 = 0.

• there is no g ∈ k and nonzero linear differential operator L ∈ C[∂], such that

L(∂(a0/a3)/(a0/a3)) = ϕ(g)− g.

Then, f is ∂-transcendent over k.

Proof. Let G be the difference Galois group of the equation of order three satisfied by

f . The first assumption ensures that the operator has no right factor of order one and

the second assumption ensures that the operator has no left factor of order one. So the

operator is irreducible and then the difference Galois group is irreducible. When G is

imprimitive, this is the same reasoning as [ADR21, Theorem 3.5]. When G is primitive,

it contains SO3(C) and we now follow the proof of [ADR21, Theorem 3.5]. □
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