
COMPUTING BASIS OF SOLUTIONS OF ANY MAHLER

EQUATION

Abstract. Mahler equations arise in a wide range of contexts including the study
of finite automata, regular sequences, algebraic series over Fp(z), and periods of
Drinfeld modules. Introduced a century ago by K. Mahler to study the transcendence
of certain complex numbers, they have recently been the subject of several works
establishing a deep connection between such transcendence properties and the nature
of their solutions. While numerous studies have investigated these solutions, existing
algorithms can only compute them in specific rings: rational functions, power series,
Puiseux series, or Hahn series. This paper solves the problem by providing an
algorithm that computes a complete basis of solutions for any Mahler equation,
along with a decomposition of each solution over the field of Puiseux series. Along
the way, we describe an algorithm that computes a fundamental matrix of solutions
for any Mahler system.
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1. Introduction

The study of solutions of linear differential equations is a classical and extensive
field of research. Any linear differential equation of order m with coefficients in C((z))
admits a basis of solutions consisting of C-linear combinations of elements of the form

(1) f(z)zα(log z)keP (z−1/m!)

where f(z) is a Gevrey series, α ∈ C, k ∈ Z≥0, and P ∈ XC[X]. Various algorithms
have been established for computing such solutions [Tur55, Tou87, Bar97].

The subject of our paper is the so-called Mahler equations. A linear Mahler equation
is an equation of the form

a0(z)y(z) + a1(z)y(z
p) + · · ·+ am(z)y(zp

m
) = 0

where p ≥ 2 is an integer, a0am ̸= 0 and a0, . . . , am are, depending on the context,
polynomials, power series, etc. Though less widely known than their differential coun-
terparts, they have been the subject of numerous recent papers due to their connections
with several areas, see the discussion in Section 2. Only quite recently, a general form
for a basis of solutions analogous to (1) has been established for Mahler equations
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(see [FR25]). However, the proof is nonconstructive. Algorithms do exist to compute
rational, power series, Puiseux series [CDDM18], or Hahn series [FR24] solutions of a
given Mahler equation, but none can provide a full basis of solutions. Our paper fills
this gap.

1.1. Linear Mahler equations. Let K be a field and z be an indeterminate. For
each integer p ≥ 2, we consider the map ϕp : K(z)→ K(z) defined by z 7→ zp. Let R
be a ring extension of K(z) and let ϕp extend to R. A p-Mahler equation over R is a
linear functional equation of the form

(2) a0y + a1ϕp(y) + · · ·+ amϕm
p (y) = 0

where a0, . . . , am ∈ R and a0am ̸= 0. In what follows, we focus on the case where
R = K[[z]]. However, the methods we develop here extend immediately to the case
where R is the field of Puiseux series over K.

Power series –or even Puiseux series– are not sufficient to solve arbitrary Mahler
equations over K[[z]]. A famous example comes from the equation

y(zp)− y(z) = z−1

for which a quick computation reveals that it has no Puiseux series solution. Mean-

while, the formal series h(z) =
∑

k≥1 z
−1/pk is a solution to this equation. This is

not a Puiseux series, but since its support is a well-ordered subset of the rational
numbers, h(z) is a Hahn series. Generalizing this remark, in [FR25], the authors
proved that1, given an integer s ≥ 1, a s-dimensional multi-linear recurrence sequence

u = (uk1,...,ks)k1,...,ks ∈ K
Zs

and a s-tuple of positive rational numbers a = (a1, . . . , as),
the Hahn series

(3) ξω :=
∑

k1,··· ,ks≥1

uk1,...,ksz
− a1

pk1
−···− as

pk1+···+ks with ω := (u,a)

is a solution to some Mahler equation over K[[z]], where we let K denote an algebraic
closure of K. We let Ω denote the set of all such tuples ω. For convenience, when
s = 0 we let ξω = 1. The definition and some details about linear recurrent sequences
are given in Section 5.1. When K has characteristic 0, any linear recurrent sequence
can be uniquely written as a linear combination of sequences with general term

(4) kα1
1 · · · k

αs
s λk1

1 · · ·λ
ks
s , α1, . . . , αs ∈ Z≥0, λ1, . . . , λs ∈ K

×
.

Hence, we recover the Hahn series introduced in [FR25]. Such a decomposition no
longer holds when K has positive characteristic.

Unfortunately, Hahn series fail to provide full basis of solutions of any Mahler equa-

tions. The equations ϕp(y) = cy with c ∈ K
× \ {1} or ϕp(y) = y + 1 have no solutions

in the field of Hahn series, as one can check by looking at the hypothetical valuation
of such a solution. However, it is possible to find solutions to these equations in some
formal ring extension of the field of Hahn series. We denote by ec a solution to the
former and by ℓ a solution to the latter, in such an extension. For convenience, we
also let e1 = 1. As mentioned in [FP25, Section 2.2], one can construct such a ring

1While the results in [FR25] are stated for K := Q, those invoked here hold over the algebraic
closure of any field. Since we must reprove these results for algorithmic considerations, we provide
details later in the paper.
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extension with field of constants {f : φp(f) = f} = K. Then, it follows from [FR25]
that any Mahler equation over K[[z]] has a basis of solutions2 y1, . . . , ym of the form

(5) yi =
∑
c∈K×

∑
j∈Z≥0

∑
ω∈Ω

fi,c,j,ω(z)ξωecℓ
j

where the fi,c,j,ω are Puiseux series with coefficients in K and each sum has finite
support. When K is of characteristic 0, this decomposition is unique if one restricts ω
to the set Ω0 ⊂ Ω of tuples ω = (u,a) for which u is of the form (4) and the entries
of a have denominators coprime with p and numerators not divisible by p, see [FR25].
The aim of this article is to provide an algorithm to compute such a basis of solutions.

Theorem 1. Let K be an effective field of characteristic 0. Algorithm 4 takes as
input a Mahler equation3 over K[[z]] of the form (2) and returns a basis y1, . . . , ym of
solutions of (2) under the form (5). Precisely, it returns:

• a finite set K0 ⊂ K
×
, an integer j0 ≥ 0, and a finite set Ω1 ⊂ Ω0 such that the

supports of the sums (5) are included in K0 × {0, . . . , j0} × Ω1,

• an integer d and an integer v such that fi,c,j,ω(z) ∈ z−vK[[z1/d]] for every
i, c, j,ω,
• the coefficients of the Puiseux expansion of each fi,c,j,ω(z) up to any prescribed
order.

Remark. (i) The nonzero Puiseux series fi,c,j,ω(z) appearing in (5) are also solu-
tions of some p-Mahler equations. Such Puiseux series are uniquely determined
by their associated equation and their first coefficients. It is possible to adapt
Algorithm 4 to associate to each fi,c,j,ω(z) a p-Mahler equation it satisfies. In
particular, this allows one to check whether such a series is 0 or whether there
are linear relations, or algebraic relations of a given degree, between them (see
[AF17]).

(ii) Our algorithm can be used to compute solutions in specific rings, such as power,
Puiseux or Hahn series. While it does not improve the existing algorithm for
Puiseux series, it significantly improves the one for Hahn series. Indeed, the
algorithm in [FR24] computes the coefficients of zγ of any Hahn series solution
for exponents γ inside a given finite set. Using Theorem 1, given an integer N ,
we can provide a closed formula for the coefficients of zγ with |γ| ≤ N , which
is an infinite set.

1.2. Linear Mahler systems. Recall that we let ϕp denote the map z 7→ zp. Al-
though Theorem 1 is about linear equations, the algorithm it refers to relies on our
ability to solve linear systems. A p-Mahler system over K((z)) is a system of the form

(6) ϕp(Y ) = AY

with A ∈ GLm(K((z))). Let PK =
⋃

d≥1K((z1/d)) and PK =
⋃

d≥1K((z1/d)) denote

the fields of Puiseux series with coefficients in K and K respectively. Let HK =

K((zQ)) denote the field of Hahn series with value group Q and coefficients in K,
that is the set of formal series

∑
γ∈Q aγz

γ with aγ ∈ K such that {γ : aγ ̸= 0} is a

2A basis of solutions of (2) is a set of m solutions which are linearly independent over the field of

constants K.
3We assume that we are provided with a way to compute as many coefficients as needed in the

power series expansion of a0, . . . , am.
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well-ordered subset of Q with respect to the restriction of the order <. The map ϕp

extends to PK, PK and HK in the obvious way. Roques and the first author [FR25,
Theorem 17] proved that any p-Mahler system (6) over K((z)) has a fundamental
matrix of solutions of the form

(7) PHeC

where

(a) the matrix P ∈ GLm(PK) is such that Θ := ϕp(P )−1AP is block upper

triangular with entries in K[z−1/∗] and constant non-singular diagonal blocks;
(b) the matrix H

• belongs to GLm(HK) and satisfies ϕp(H)C = ΘH, where C ∈ GLm(K) is
the constant term of Θ,
• is block upper triangular with blocks fitting with the block decomposition
of Θ and diagonal blocks equal to the identity;
• has coefficients which are K[z±1/d]-linear combinations of some ξω, ω ∈ Ω,
where d ∈ Z>0;

(c) the matrix eC has coefficients which are K-linear combinations of the ecℓ
j ,

c ∈ K
×
, j ∈ Z≥0, and satisfies ϕp(eC) = Cec.

We make the computation of such a fundamental matrix of solutions effective.

Theorem 2. Let K be an effective field. Consider a p-Mahler system (6) over K((z)).
Algorithms 1, 2 and 3 provide a fundamental matrix of solutions of the form (7). More
precisely:

• Algorithm 1 provides a solution to (a) over K, that is a matrix with the required

form Θ ∈ GLm(K[z−1/∗]) and a truncation up to any order of a matrix P ∈
GLm(PK) of Puiseux series with coefficients in K such that Θ = ϕp(P )−1AP ;
• Algorithm 2 provides a solution to (b), that is a description of the entries of
H as K-linear combinations of some ξω, ω ∈ Ω;
• Algorithm 3 provides a solution to (c), that is a description of the entries of

eC as linear combinations of some ecℓ
j, c ∈ K

×
, j ∈ Z≥0.

Remark. • It follows from Theorem 2 that a solution to (a) exists with K as a
base field instead of K. Such a fact does not follow from [FR25] directly but is
the consequence of the construction in Section 4. In contrast, it is not always
possible to perform (c) on K (see Section 5.3).
• The entries of the matrix H produced by Algorithm 2 are linear combinations
of some ξω over the field K, rather than over the ring K[z±1/d] as was the case
in (b). This refines the results from [FR25].

To any linear equation (2) one can associate a system by considering its companion
matrix. If one obtains a fundamental matrix of solutions of this system thanks to
Theorem 2, then one gets a solution as in Theorem 1 by looking at the first row of
PHeC .

1.3. Organization of the paper. In Section 2 we discuss connections between Mahler
equations and other areas of research. This section is independent of the remainder of
the paper and may be skipped on a first reading. The main contribution of this paper
is Algorithm 1 whose proof occupies the next two sections. In Section 3 we gather
preliminary results about the matrices P and Θ introduced in Section 1.2 that will
reduce the problem to a finite-dimensional one over K. In Section 4, we present and
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prove the correctness of Algorithm 1. Once one knows Θ, in Section 5 we describe
Algorithms 2 and 3 which allow us to compute the matrices H and eC , respectively,
introduced in Section 1.2. They provide algorithmic versions of the constructions from
[FR25] and [Roq18]. Then, we state Algorithm 4 which is the core of Theorem 1.
Eventually, in Section 6, we run this algorithm on two examples.

2. Applications and connections

The study of Mahler equations is motivated by their occurrence in diverse areas
of mathematics. The algorithms developed in this paper provide computational tools
relevant to each of these domains. We outline some key connections in what follows.
This material is not needed for the rest of the paper. Thus, the reader should feel free
to proceed directly to Section 3.

Automatic sequences and automatic real numbers. Mahler equations naturally
occur in the study of finite automata. A deterministic finite automaton can be used
as a transducer to produce a sequence (un)n∈N where un denotes the output of the
automaton when it reads the expansion of n in base p (see [AS03] for details). When
the elements un belong to some field K, a classical result states that the power series∑

n unz
n satisfies some linear Mahler equation with coefficients in K[z] (see [Cob68]).

When K := Q, combined with Mahler’s method, this connection has been used to
establish the following results4:

• the base-b expansion of an irrational algebraic real number cannot be produced
by a finite automaton [Phi15, AF17];
• the expansions in two multiplicatively independent bases of an irrational real
number cannot both be produced by automata [AF25].

It has also been used to reprove and generalize the well-known Cobham’s theorem
[SS19, AF25].

Regular sequences. Regular sequences are a generalization of sequences produced
by a finite automaton. Strictly speaking, the p-regular sequences are the sequences
that may produce a weighted finite automaton when reading the integers written in
base p. Among them one finds the sequences whose nth term is the sum of digits of n
in base p, the p-adic valuation of n or of n!, the complexity of the merge-sort algorithm
in a set with n elements, the number of odd entries in the nth row of Pascal’s triangle,
the nth Cantor number. As established by Becker [Bec94], the generating series of a
p-regular sequence is solution to some p-Mahler equation.

Algebraic power series in Fp[[z]]. When p is prime, the elements of Fp[[z]] that
are algebraic over Fp[z] are exactly the solutions of linear Mahler equations over Fp[z].
Actually, given an algebraic equation over Fp[z], deriving a p-Mahler equation whose
solutions in Fp[[z]] are the power series solutions of the former algebraic equation is
straightforward, using the identity f(zp) = f(z)p in Fp[[z]]. For example, when p = 2,
any solution to

c0 + c1y(z) + c2y(z)
2 = 0,

with c0, c1, c2 ∈ Fp[z] and c0c1c2 ̸= 0, satisfies the equation

c1c0y(z) + (c21 − c2c0)y(z)
2 − c22y(z)

4 = 0

4The first result was originally proved using a different approach, see [AB07].
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which, for power series in F2[[z]], is equivalent to the Mahler equation

c1c0y(z) + (c21 − c2c0)y(z
2)− c22y(z

22) = 0.

One should note, however, that this does not imply that our main algorithm for Mahler
equations provides all solutions of the initial algebraic equation. Indeed, the identity
f(zp) = f(z)p does not extend to HFp

[(ec)c, ℓ].

Periods of Drinfeld modules. The theory of Drinfeld modules in positive character-
istic provides analogs of numerous famous periods. As shown by Denis [Den00], some
of them arise as values of solutions of Mahler equations. For example, a p-analog of π
is given by

∏
n≥0(1− θ1−pn) in the completion K of the algebraic closure of Fp((θ

−1)).

This is the value at θ−1 of the function f(z) :=
∏

n≥0(1−θzp
n
) ∈ K[[z]] which satisfies

the p-Mahler equation

f(z)− (1− θz)f(zp) = 0 .

Another example is the analog ζC of the classical Riemann ζ function. Carlitz [Car35]
proved that ζC(s) = fs(θ) for s ∈ {1, . . . , p − 1}, where fs(z) ∈ K[[z]] satisfies the
inhomogeneous p-Mahler equation

fs(z
p)− (−1)s(zp − θ)sfs(z) = (−1)s(zp − θ)s .

Using this equation, Dennis [Den06] was able to prove the algebraic independence of
ζC(1), . . . , ζC(p− 1) over Fp(θ) (see also [Fer18]).

Purity results. When considering the minimal differential equation satisfied by some
E-function, André [And00] proved that the functions f(z) appearing in (1) are E-
functions as well. Surprisingly, such a “purity theorem”, which does not concern the
values of these functions, implies the celebrated Siegel–Shidlovskii theorem on algebraic
relations between values of E-functions at algebraic points and even some remarkable
refinements due to Beukers [Beu06]. A purity theorem analogous to André’s has re-
cently been established in the framework of Mahler equations [FR25] and similarly
shares a deep connection with results concerning the values of solutions of these equa-
tions [ABS23]. One instance of this result is the following: if (2) is the minimal Mahler
equation satisfied by some p-regular power series, then it has a basis of solutions of the
form (5) for which each of the series fi,c,j,ω is p-regular too.

Galois theory of Mahler equations. Recent results have established that any al-
gebraic relation between values of solutions of Mahler equations at some nonzero alge-
braic point has a functional origin (see [AF24]). The study of functional relations is a
delicate task and constitutes the subject of difference Galois theory. The Galois group
of a Mahler system (6) is a linear algebraic group which encodes the relations between
the entries of any fundamental matrix of solutions. From this point of view, being
able to compute a fundamental matrix of solutions of a Mahler system as in Theorem
2 should be of some help to understand the algebraic relations between solutions of
Mahler equations.

3. Properties of the Puiseux part of a fundamental matrix of solutions

We fix an integer p ≥ 2, a field K and let K denote an algebraic closure of K. The
general form (7) of a fundamental matrix of solutions leads us to look for pairs (P,Θ)
satisfying Condition (a). This section is devoted to the study of such pairs.
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Definition 3. We say that a pair of m×m matrices (P,Θ) is admissible with respect
to (6) if the following holds:

• Θ is block upper triangular with entries in K[z−1/∗] and has non-singular con-
stant diagonal blocks;
• P ∈ GLm(PK) is such that

(8) ϕp(P )Θ = AP .

3.1. Equations, systems and modules. We briefly recall the vocabulary of equa-
tions, systems and modules.

Let HK denote the field of Hahn series with coefficients in K and value group Q.
An element of HK is a formal series f(z) =

∑
γ∈Q fγz

γ with fγ ∈ K such that the set

{γ : fγ ̸= 0} is a well-ordered subset of Q for the total order <. This guarantees that
HK is a field extension of K((z)) (see [Roq18] for details).

Given a subfield F of HK, we say that two p-Mahler systems ϕp(Y ) = AY and
ϕp(Y ) = BY are F-equivalent if there exists a matrix F ∈ GLm(F) such that A =
ϕp(F )BF−1. When K is algebraically closed, by the cyclic vector lemma5 [FP22], any
p-Mahler system

(9) ϕp(Y ) = AY, A(z) ∈ GLm(F)
is F-equivalent to a p-Mahler system whose matrix is of the form

(10) B =


0 1 0 · · · 0

. . .
. . .
. . .

. . .

0 1
a0 · · · · · · · · · am−1


where a0, . . . , am−1 ∈ F, a0am−1 ̸= 0. A vector Y is solution to the p-Mahler system
with matrix B if and only if Y = t(y, ϕp(y), . . . , ϕ

m−1
p (y)) for some y solution to the

following p-Mahler equation

(11) a0y + a1ϕp(y) + · · ·+ am−1ϕ
m−1
p (y)− ϕm

p (y) = 0 .

Consider the ring DF := F⟨Φ⟩ of non-commutative polynomials in the indeterminate
Φ with the property that Φf = ϕp(f)Φ for any f ∈ F. To any companion matrix B as
in (10) we associate the operator LB = a0 + a1Φ+ · · ·+ am−1Φ

m−1 − Φm. Then (11)
may be rewritten as LB(y) = 0.

To any system (9), we can associate a DF-module MA of finite rank as follows: the
underlying F-vector space is Fm and Φ acts on Fm by

∀v ∈ Fm, Φ(v) = A−1ϕp(v) .

Conversely, to any DF-module M of finite rank we can associate a Mahler system by
choosing a basis. It is not difficult to prove that if ϕp(Y ) = AY and ϕp(Y ) = BY are
F-equivalent then the DF-modules MA and MB are isomorphic. Furthermore, if B is
a companion matrix, MB is isomorphic to the module DF/DFLB.

To any operator L = a0 + a1Φ + · · · + amΦm ∈ DF we associate a Newton polygon
N (L), which is the convex hull of the set of points

{
(pi, j) : 0 ≤ i ≤ m, j ≥ val ai

}
.

We let µ1, . . . , µr ∈ Q denote the finite slopes of N (L). Let d(L) be the least integer

5The proof in [FP22] is written over Q(z) but it works over F since its field of coefficients K is
algebraically closed, hence, infinite.
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d such that µ1, . . . , µr ∈ d−1Z[p−1]. This is the least integer d relatively prime with p
and such that the denominators of µ1, . . . , µr divide dpk for some k.

3.2. Ramification order of an admissible pair. Recall that we assume K to be
algebraically closed. We now take F := K((z)) and consider a Mahler system

(12) ϕp(Y ) = AY, A(z) ∈ GLm(K((z))) .

Then, the module MA is isomorphic to some DK((z))-module DK((z))/DK((z))L. We
set d(A) := d(L). It can be proved that this does not depend on the choices of L such

that MA ≃ DK((z))/DK((z))L, a fact we do not need here. Note that d(A(zd(A))) = 1
for any matrix A, so we can always reduce to the case where d(A) = 1. Note also that
d(A) | pm − 1 so that d(A(zp

m−1)) = 1.

Proposition 4. Suppose that K is algebraically closed. Then, the system (12) admits

an admissible pair (P,Θ) such that P and Θ have entries in K((z1/d(A))).

As mentioned in the introduction, we will obtain as a by-product of Algorithm 1
that this proposition still holds when K is not algebraically closed.

Proof. Up to replacing z by zd(A), we may assume that d(A) = 1. Then, Proposition 4
can be reformulated as follows: the system (12) is K((z))-equivalent to a block upper
triangular system with matrix in GLm(K[z−1]) and constant diagonal blocks. Since we
closely follow the proof of Step 1 in [FR25, Theorem 17], we shall be brief and present
only the necessary adaptations. The existence of an admissible pair follows from a
construction in two parts. The first one is a factorization of Mahler operators which
implies that any Mahler system is Puiseux-equivalent to an upper triangular system
with constant diagonal coefficients and Puiseux above-diagonal coefficients. The second
part is a construction which implies that such a system is Puiseux-equivalent to a
block upper triangular system with constant diagonal blocks and whose above-diagonal
blocks have entries in K[z−1]. We only have to explain that these two steps may be
carried out over K((z)) instead of the field of Puiseux series and that K may be any
algebraically closed field.

Part 1: Factorization of Mahler operators. We prove the following claim: if L ∈ DK((z))

is such that d(L) = 1, then one has L = L1 · · ·Lm with Li ∈ DK((z)) of degree 1 in Φ.
The proof is an adaptation of the one of [Roq24, Proposition 15]. By induction, it

is enough to prove that L admits a factorization L = MN , with M,N ∈ DK((z)), N
of degree 1 in Φ and d(M) = 1 (then, apply the induction hypothesis to M). The
first slope µ1 of N (L) is of the form µ1 = a/(pk − 1) for some a ∈ Z and k ≥ 1.
Since d(L) = 1, µ1 has to be an integer. Without loss of generality, we may suppose
that µ1 = 0. Indeed, with the notation of [Roq24], this amounts in replacing L with

L[θµ1 ], which does not modify d(L) since µ1 ∈ Z ([Roq24, Lemma 17]). By [Roq24,
Lemma 20], there exists f ∈HK such that f(0) = 1 and L(fec) = 0 for some c ∈ K×.
The proof given there readily extends to any algebraically closed field K. Since L has
coefficients in K((z)), f actually belongs to K((z)) (see [FP25, Lemma 28]). Let M
denote the result of the right Euclidian division of L by N := (Φ − c)f−1 in DK((z)).
Then M ∈ DK((z)) and L = MN . By [Roq24, Lemma 21], each slope of M is p times
a slope of L. A fortiori, d(M) = 1. This proves the claim.

Part 2: Reduction to K[z−1]. Let L ∈ DK((z)) be such that MA ≃ DK((z))/DK((z))L.
From the first step, there exists L1, . . . , Lm ∈ DK((z)) of order 1 such that

L = L1 · · ·Lm .
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Arguing as in [FR25, Section 4.1.1], we conclude that the Mahler system (12) isK((z))-
equivalent to an upper triangular system with constant diagonal coefficients and above-
diagonal coefficients inK((z)). Then we follow the construction in [FR25, Section 4.1.2]
without any modification. The key argument is that [FR25, Lemma 20] remains valid
when one replaces the field of Puiseux series with K((z)) and when K is any field. The
remainder of the construction proceeds identically. □

3.3. Valuations of an admissible pair. The aim of this section is to bound from
below valP and valΘ for some admissible pair (P,Θ). We consider the following set

Sp := {s ∈ Z<0 : p ∤ s} ∪ {0}

of non-positive integers either equal to 0 or not divisible by p.

Proposition 5. Suppose that K is algebraically closed and consider a Mahler system
(12) with d(A) = 1. Then, there exists an admissible pair (P,Θ) for which

(i) P ∈ GLm(K((z))) and Θ has support in Sp;
(ii) one has

valP ≥ valA

p− 1
, and valΘ ≥ pm valA− p val(detA)

p− 1
.

Furthermore, each admissible pair satisfying (i) also satisfies (ii).

The proof is divided in two steps, corresponding respectively to (i) and (ii).

3.3.1. Proof of (i) of Proposition 5. By Proposition 4, the system has an admissible
pair (P,Θ) with P ∈ GLm(K((z))) and Θ ∈ GLm(K[z−1]). Since K is algebraically
closed, there exists such pair with Θ upper triangular. For such pairs we let θ1, . . . , θm
denote the diagonal entries of Θ and θi,j(z), i < j, denote its above diagonal entries.

Let I := {(i, j) ∈ {1, . . . ,m}2 : i < j}. We define an order on I as follows:
(i, j) ≺ (k, l) if either j < l or (j = l and i > k). To scan the above-diagonal entries of
Θ(z) with respect to this order one proceeds from left-to-right and then from bottom-
to-top.

Suppose by contradiction that there exists no admissible pairs (P,Θ) for which P ∈
GLm(K((z))) and Θ is uper triangular with support is in Sp. Thus, for any admissible
pair (P,Θ) with P ∈ GLm(K((z))) and Θ upper triangular, there exists (i, j) ∈ I such
that θi,j(z) has a non-zero multiple of p in its support: we let (iΘ, jΘ) be the least of
them with respect to ≺. Consider the pairs (P,Θ) such that (iΘ, jΘ) takes its maximal
value with respect to ≺ and let (i0, j0) denote this value. Recall that, for any (P,Θ)
such that (iΘ, jΘ) = (i0, j0), the support of Θi,j(z) for each (i, j) ≺ (i0, j0) is included
in Sp. Furthermore, by assumption, for any pair (P,Θ) such that (iΘ, jΘ) = (i0, j0),
there exists ν ∈ Z>0 such that z−νp belongs to the support of θi0,j0(z) ∈ K[z−1]. When
the pair (P,Θ) is fixed, we let νΘ denote the greatest such ν. Then, we let ν0 denote
the minimum of the integers νΘ, among all the pairs (P,Θ) for which (iΘ, jΘ) = (i0, j0).
From now on we fix a pair (P,Θ) with (iΘ, jΘ) = (i0, j0) and νΘ = ν0. We shall obtain
a contradiction.

Let η denote the coefficient of z−ν0p in θi0,j0(z). Let M denote the matrix which is

the identity but for its (i0, j0)th entry which is equal to ηθ−1
j0

z−ν0 . Set

Θ̃ := ϕp(M)−1ΘM.
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This matrix is upper triangular, with diagonal coefficients θ1, . . . , θm and above diag-
onal coefficients in K[z−1]. Furthermore, when (i, j) ≺ (i0, j0) the (i, j)th coefficient

of Θ̃ is the same as the one of Θ and the (i0, j0)th coefficient of Θ̃ is equal to

(13) θ̃i0,j0(z) := θi0,j0(z)− ηz−ν0p + ηθi0θ
−1
j0

z−ν0 .

Last, setting P̃ = PM we have ϕp(P̃ )Θ̃ = AP̃ so that the pair (P̃ , Θ̃) is admissible.

By maximality of (i0, j0), the support of θ̃i0,j0(z) has an element of the form −µp, for
some µ ∈ Z≥1. By minimality of ν0, µ ≥ ν0. This contradicts (13). □

3.3.2. Proof of (ii) of Proposition 5. Let (P,Θ) be an admissible pair satisfying (i).
Up to conjugation we may and will assume that Θ is upper triangular. We start by
establishing the lower bound on valP . Let P1, . . . , Pm enumerate the columns of P
from left to right. We proceed by contradiction. Suppose that the lower bound for
valP does not hold and let i be the least integer such that valPi < valA/(p− 1). We
let

θ1(z), . . . , θi−1(z), λi, 0, . . . , 0

denote the entries of the ith column of Θ(z). Then, we infer from (8) that

λiϕp(Pi) = APi − θ1(z)ϕp(P1)− · · · − θi−1(z)ϕp(Pi−1)

Since valPi < valA/(p − 1), we have val(APi) ≥ val(A) + val(Pi) > p val(Pi) =
val(λiϕp(Pi)). Thus, the valuation of ϕp(Pi) is equal to the valuation of

θ1(z)ϕp(P1) + · · ·+ θi−1(z)ϕp(Pi−1) .

Such a valuation is of the form ν+pµ, where ν is in the support of some θj(z), 1 ≤ j < i,
and µ ≥ minj<i val(Pj). Since val(ϕp(Pi)) = p val(Pi), p must divide ν. Since ν ∈ Sp,
we have ν = 0. Thus, valPi = µ ≥ minj<i val(Pj) ≥ valA/(p− 1), a contradiction.

To establish the bound for valΘ we first bound valP−1 from below. Since Θ is upper
triangular with invertible constant diagonal entries, detΘ ∈ K×. Hence, val detΘ = 0
and we infer from (8) that

(14) val(detP ) =
val(detA)

p− 1
.

From the formula P−1 = (detP )−1 tComP , we deduce that

valP−1 = val(ComP )− val(detP )

≥ (m− 1) valP − val(detA)

p− 1
≥ (m− 1) valA− val(detA)

p− 1
.

Last, since Θ = ϕp(P
−1)AP , we have

valΘ ≥ p valP−1 + valA+ valP ≥ pm valA− p val(detA)

p− 1

□
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3.4. Laurent series expansion of P . We fix a Mahler system (12) for which d(A) =
1. We do not necessarily assume that K is algebraically closed. Note that if (P,Θ) is
admissible it remains so when considering the equation over K((z)). In particular, the
conclusion of Proposition 5 remains true. In the remainder of the paper we shall take
the following notation:

νΘ := min

{
v ≥ pm valA− p val(detA)

p− 1
: v ∈ Sp

}
, νP :=

⌈
valA

p− 1

⌉
,

ν := min{νP , pνP + valA−1}+ νΘ,(15)

µ := max

{⌈
−valA−1 + νΘ

p− 1

⌉
,
val det(A)

p− 1
− (m− 1)νP

}
.

The integers νP and νΘ should be considered as lower bounds for the valuations of the
components of an admissible pair (P,Θ). Since val(detA) ≥ m valA we have νΘ ≤ 0.
Last, it follows from (14) that µ is an integer.

Given an admissible pair (P,Θ) –if such a pair exists– one can group the columns
of P according to the block decomposition of Θ. The aim of this section is to establish
recurrence formulas for the Laurent series expansion of these groups of columns.

3.4.1. A recurrence formula for the blocks of columns. Let P ∈ GLm(K((z))) and let
Θ ∈ GLm(K[z−1]) be block upper triangular with blocks of sizes b1, . . . , bs, respectively,
support in Sp, val(P ) ≥ νP and valΘ ≥ νΘ. We do not assume at this stage that
(P,Θ) is an admissible pair. We partition the columns of P according to the block
decomposition of Θ and denote by Q1, . . . , Qs the corresponding matrices. Precisely,
Qj is the m × bj matrix consisting of the columns b1 + · · · + bj−1 + 1 to b1 + · · · + bj
of P . For i < j we let Θi,j(z) denote the (i, j)-th block of Θ, which is a bi × bj matrix
and Θ1, . . . ,Θs denote its diagonal blocks. We infer from Definition 3 that the pair
(P,Θ) is admissible if and only if ϕp(P )Θ = AP , that is, if and only if

(16) ∀j ∈ {1, . . . , s}, Qj(z) = A−1(z)Qj(z
p)Θj +

j−1∑
i=1

A−1(z)Qi(z
p)Θi,j(z) .

By assumption, we may write

Qj(z) =:
∑
k≥νP

Qj,kz
k, Θi,j(z) =:

0∑
k=νΘ

Θi,j,kz
k, A−1(z) =:

∑
k≥valA−1

Bkz
k ,

where Θi,j,k := 0 when k /∈ Sp. Then, (16) is equivalent to: ∀j ≤ s, ∀n ≥ ν,

(17) Qj,n =

n−pνP∑
k=valA−1

BkQj,n−k
p
Θj +

j−1∑
i=1

n−pνP−νΘ∑
k=valA−1

0∑
l=νΘ

BkQi,n−k−l
p

Θi,j,l .

Remark 6. Since − valA−1 − νΘ ≤ (p − 1)µ, if n is an integer such that ν ≤ n ≤ µ

(respectively n > µ) then n−valA−1−νΘ
p ≤ µ (respectively < n). Thus, for any n ∈

{ν, . . . , µ} the matrices Qi,t and Qj,t appearing in the right-hand side of (17) are such
that t ≤ µ. Furthermore, if n > µ, the matrices Qi,t and Qj,t appearing in the right-
hand side of (17) are such that t < n. Thus, once the matrices Qj,n, n ∈ {ν, . . . , µ},
Θj and Θi,j,k are known, the matrices Qj,n with n > µ can be computed inductively.
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3.4.2. The window {ν, . . . , µ}. We consider the map π : K((z))m → Km(µ−ν+1) defined
by

π : f(z) =
∑
n

fnz
n ∈ K((z))m 7→ t( tfν , . . .

tfµ) .

Concretely, π maps any vector of Laurent series with size m to the vector obtained
by concatenating the coefficients corresponding to zν , zν+1, . . . , zµ. Let F be a matrix
whose columns Fi are vectors of Laurent series of size m. By abuse of notation we
denote π(F ) the matrix whose columns are the π(Fi). We let V0 denote the vector

space {0}m(νP−ν) × Km(µ−νP+1), that is the image under π of the space of vectors
f ∈ K((z))m for which valf ≥ νP . In particular, if (P,Θ) is an admissible pair as in
Proposition 5, and P1, . . . , Pm are the columns of P , we have π(Pi) ∈ V0. For each
non-positive integer l ∈ {νΘ, . . . , 0} ∩ Sp =: S ′p we let Ml denote the square matrix
defined by

(18) Mlπ(f(z)) = π(zlA−1(z)f(zp))

for all f ∈ K((z))m for which valf ≥ νP , and which is null on the supplementary

space Km(νP−ν)×{0}m(µ−νP+1) of V0. From Remark 6, such matrices are well-defined.
Note, for computational considerations, that these matrices Ml admit decompositions
into blocks of m×m matrices denoted by Ml;i,j , 1 ≤ i, j ≤ µ− ν + 1, such that:

Ml;i,j =

{
0 if j ∈ {1, . . . , νP − ν}
Bi+ν−l−1−p(j+ν−1) otherwise.

3.4.3. Reduction to a finite dimensional problem. From now on, we let M := M0. The
map π and the matrices M = M0,M−1, . . . ,MνΘ allow us to express the admissibility
of a pair (P,Θ). Indeed, the equation (17) for n ∈ {ν, . . . , µ} is equivalent to

(19) ∀j ∈ {1, . . . , r}, π(Qj) = Mπ(Qj)Θj +
∑
i<j

∑
l∈S′

p

Mlπ(Qi)Θi,j,l .

Conversely, we have the following.

Proposition 7. Let r ≥ 1 and let b1, . . . , br be integers with b1 + · · · + br = m. For
each j ∈ {1, . . . , r}, let Ej be a m(µ−ν+1)×bj matrix. Suppose that the m columns of
E1, . . . , Er are K-linearly independent and belong to V0. Let Θ1, . . . ,Θr, Θi,j,l, l ∈ S ′p,
be matrices with entries in K, such that

(20) ∀j ∈ {1, . . . , r}, Ej = MEjΘj +
∑
i<j

∑
l∈S′

p

MlEjΘi,j,l .

Let Θ denote the m × m matrix with diagonal blocks Θ1, . . . ,Θr and upper diagonal
blocks Θi,j(z) =

∑
l∈S′

p
Θi,j,lz

l. Then, there exists a matrix P ∈ GLm(K((z))) such

that the pair (P,Θ) is admissible for (23) and π(P ) = (E1| · · · |Er).

We establish Proposition 7 after the following lemma.

Lemma 8. Let P be an m×m matrix with entries in K((z)). Let Θ ∈ GLr(K[z−1])
be block upper triangular with constant diagonal blocks and support in Sp. Suppose that
ϕp(P )Θ = AP . If the columns of P are linearly independent over K, then they are
linearly independent over K((z)), that is P ∈ GLm(K((z))), or, equivalently, (P,Θ) is
an admissible pair.
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Proof. Let P1, . . . , Pm denote the columns of P . Since the entries of P are Laurent
series with coefficients in K, and P1, . . . , Pm are K-linearly independent, they are K-
linearly independent. Thus, up to enlarge K, we may suppose that Θ is upper triangu-
lar with constant diagonal entries θ1, . . . , θm. We argue by contradiction. Assume on
the contrary that P1, . . . , Pm areK((z))-linearly dependent. Let r be minimal such that

P1, . . . , Pr are K((z))-linearly dependent. Let λ(z) = t(λ1(z), . . . , λr(z), 0, . . . , 0) ∈
K((z))m \ {0} be such that

λ1P1 + · · ·+ λrPr = 0 .

By minimality of r, λr ̸= 0. We may then suppose that λr = 1. Since P1, . . . , Pr are
K-linearly independent, there exists an index i ∈ {1, . . . , r− 1} such that λi /∈ K. We
let i0 be the greatest of such indices. From the identity

ϕp(P )Θλ = APλ = 0,

the fact that Θ is upper triangular and the fact that r is minimal, we deduce that
there exists h(z) ∈ K((z)) such that

Θ(z)λ(z) = h(z)λ(zp).

Looking at the rth coordinate on both side, we get h(z) = θr. Thus,

Θ(z)λ(z) = θrλ(z
p).

Let (0, . . . , 0, θi0 , ti0+1(z), . . . , tm(z)), ti ∈ K[z−1], denote the i0th row of Θ. Then,

(0, . . . , 0, θi0 , ti0+1(z), . . . , tm(z))λ(z) = θrλi0(z
p)

thus

(21) θi0λi0(z) + t(z) = θrλi0(z
p)

where t(z) ∈ K[z−1] has support in Sp. Looking at the valuation on both sides, one of
the following mutually exclusive situations holds:

(a) valλi0 = val t < p valλi0 ,
(b) valλi0 = p valλi0 < val t,
(c) val t = p valλi0 .

The first two situations are impossible since val t ≤ 0. Thus (c) holds and valλi0 = val t
p .

Since valλi0 is an integer and val t ∈ Sp, we have val t = 0 that is t ∈ K and valλi0 = 0.
Then, Equation (21) forces λi0 to be in K, a contradiction. □

Proof of Proposition 7. For j ∈ {1, . . . , r}, we define m× bj matrices of Laurent series
Qj =

∑
n≥νP

Qj,nz
n in the following way:

• Qj,νP , . . . , Qj,µ are uniquely defined by the identity π(Qj) = Ej .
• Suppose that n ≥ µ and that Qi,k is defined for any i ≤ j and k < n. Then
Qj,n is uniquely defined by (17).

By (19) and (20), Q1, . . . , Qr,Θ satisfy (17). Let P = (Q1| · · · |Qr), so that ϕp(P )Θ =
AP . By construction, π(P ) = (E1| · · · |Er). Thus, it only remains to prove that the
columns of P are K((z))-linearly independent. Since the columns of E1, . . . , Er are K-
linearly independent, the columns of P are K-linearly independent. P1, . . . , Pr. Then,
the result follows from Lemma 8. □
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3.5. Independence of the columns’ projections. We continue with K a field that
we do not assume to be algebraically closed. Proposition 7 implies that we only need to
compute π(P ) and Θ in order to obtain any coefficient of the matrix P of an admissible
pair (P,Θ). The following lemma guarantees that the matrix π(P ) has maximal rank.

Lemma 9. Let (P,Θ) be an admissible pair for (12) with P ∈ GLm(K((z)) and Θ
whose support is in Sp. Then, the m columns of π(P ) are K-linearly independent.

Proof. Let P1, . . . , Pm denote the columns of P . Suppose on the contrary that the
column vectors π(P1), . . . , π(Pm) are K-linearly dependent and let λ1, . . . , λm ∈ K,
not all zero, be such that

λ1π(P1) + · · ·+ λmπ(Pm) = 0 .

Let λ = (λ1, . . . , λm). Then, by definition of π and µ,

val(Pλ) > µ ≥ val det(A)

p− 1
− (m− 1)νP .

Let i0 be such that λi0 ̸= 0 and let Λ denote the matrix which is the identity but for
the i0th column which is equal to λ. Then, the matrix PΛ has m − 1 columns with

valuation at least νP and one column with valuation at least val det(A)
p−1 − (m − 1)νP .

Thus,

val det(PΛ) > (m− 1)νP +
val det(A)

p− 1
− (m− 1)νP =

val det(A)

p− 1
.

Meanwhile, val det(PΛ) = val det(P ), which is equal to val det(A)
p−1 from (14). This is a

contradiction. □

3.6. A naive approach that we will not pursue. Let K denote an effective field.
A naive approach for computing (P,Θ) would consist in computing the columns of P
inductively. Indeed, the algebraic closure K of K remains effective, so that we could
assume K to be algebraically closed. Then, it is sufficient to find a pair for which Θ is
upper triangular. Then, (20) with r = m and b1 = · · · = bm = 1 provides an equation
for the jth column of π(P ) if one knows the previous columns. Precisely, we must look
for a pair (v, λ) ∈ V0 ×K× such that

(22) (I− λM)v ∈ Ej

where Ej is the vector space spanned by the vectors MlEi, l ∈ S ′p, 1 ≤ i ≤ j − 1, and
E1, . . . , Ej−1 are the first columns of π(P ) that we already computed. Furthermore, we
know that λ is one of the diagonal entries of Θ, which means that it is an exponent of the
system, following the terminology introduced in [Roq18]. Since the set of exponents of
(12) is computable and finite, solving Equation (22) reduces to an elementary problem
of linear algebra. One may compute this way m columns E1, . . . , Em satisfying (20)
and obtain this way an admissible pair (P,Θ) as in Proposition 7.

However, this method has several drawbacks compared to the algorithm we present
in the next section. In particular, it unnecessarily requires working over the algebraic
closure of K.
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4. Computing the Puiseux part of a fundamental matrix of solutions

The approach described in Section 3.6 requires working over an algebraic closure of
K. This can be avoided as we shall now see. We let K be an effective field that we do
not assume to be algebraically closed. We consider a Mahler system

(23) ϕp(Y ) = AY, A(z) ∈ GLm(K((z)))

for which d(A) = 1. Proposition 4 does not allow us to conclude that there exists a
pair (P,Θ) admissible with respect to (23), with P ∈ GLm(K((z))), since K is not
necessarily algebraically closed. This fact will follow from our construction. Recall
that if there exists an admissible pair (P,Θ) and Θ has its support in Sp, then the
vector space spanned by the columns of π(P ) has dimension m and is included in

V0 := {0}m(νP−ν) ×Km(µ−νP+1)

since val(P ) ≥ νP . According to the block structure of Θ, one can decompose P as
(Q1| · · · |Qr) where Qi are matrices with m rows each. Our construction consists of
computing a sequence of vector spaces X1 ⊂ X2 ⊂ · · · ⊂ V0 with the property that
π(Qi) ⊂ Xi for each i, for any such admissible pair (P,Θ). We establish that one of
these vector spaces has dimension m at some point. By choosing an appropriate basis,
we are able to build an admissible pair.

4.1. Construction of the vector spaces. Recall that S ′p := Sp ∩ {νΘ, . . . , 0}. We
define a sequence of vector spaces (Xj)j≥0 by induction on j as follows.

• We let X0 := {0}.
• Let j ∈ Z≥0 and assume that Xj has been defined. We let Uj := spanK(MkXj :
k ∈ S ′p) and Xj+1 be the largest subspace of V0 for which

(24) MXj+1 ⊂ Xj+1 + Uj and Xj+1 ⊂MXj+1 + Uj .

Notice that U0 = {0} and X1 is the largest subspace of V0 such that MX1 = X1.

Lemma 10. The sequences (Xj)j≥0 and (Uj)j≥0 are non-decreasing and, for all j ∈
Z≥0, Xj ⊂ Uj.

Proof. We prove by induction on j ≥ 0 that Xj ⊂ Uj , Xj ⊂ Xj+1 and Uj ⊂ Uj+1.
When j = 0 the result is clear. Let j ≥ 1 and assume the property true with j − 1.
By definition, Xj ⊂ MXj + Uj−1. Since M = M0 and 0 ∈ S ′p, we have MXj ⊂ Uj .
Moreover, by induction hypothesis, Uj−1 ⊂ Uj . Thus, Xj ⊂ Uj . Since Xj ⊂ V0, to
prove that Xj ⊂ Xj+1 we just have to prove that Xj satisfies (24). This follows from
the fact that MXj ⊂ Uj and Xj ⊂ Uj . The inclusion Uj ⊂ Uj+1 is an immediate
consequence of the fact that Xj ⊂ Xj+1. □

Before going to our main result, we provide a method to compute the spaces Xj .
Consider the non-increasing sequence (Fj,ℓ)ℓ≥0 of vector spaces defined by Fj,0 := V0

and, for any integer ℓ ≥ 0,

Fj,ℓ+1 := Fj,ℓ ∩M−1(Fj,ℓ + Uj) ∩ (MFj,ℓ + Uj) .

Lemma 11. Let j ≥ 0 and let ℓj be the least integer for which Fj,ℓj = Fj,ℓj+1. Then
Xj+1 = Fj,ℓj and ℓj ≤ m(µ− νP + 1).

Proof. First, we prove by induction on ℓ ≥ 0 that Xj+1 ⊂ Fj,ℓ. By assumption,
Xj+1 ⊂ Fj,0 = V0. Let ℓ ≥ 0 and assume Xj+1 ⊂ Fj,ℓ. Then, it follows from (24) that
Xj+1 ⊂ Fj,ℓ+1, which ends the induction.
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The sequence (Fj,ℓ)ℓ is a non-increasing sequence of sub-vector spaces of V0. Since V0

is finite dimensional, there exists a non-negative integer ℓ such that Fj,ℓ = Fj,ℓ+1. Let
ℓj denote the least of all such integers. Then, Fj,ℓj ⊂M−1(Fj,ℓj + Uj) ∩ (MFj,ℓj + Uj)
which implies that Fj,ℓj satisfies (24). Since Fj,ℓj ⊂ V0, by maximality of Xj+1, we
have Xj+1 ⊃ Fj,ℓj . Then, the beginning of the proof implies that Xj+1 = Fj,ℓj . Since
dim(Fj,0) = dimV0 = m(µ− νP + 1), we have ℓj ≤ m(µ− νP + 1). □

Remark. In [FP22], we were computing fundamental matrices of solutions in the case
where the system is regular singular at 0. This corresponds precisely to the case where
the matrix Θ may be taken to be constant. In other words, this corresponds to the
case where the vector space X1 has dimension m. Actually, in [FP22] our vector space,
called Xd, was the greatest space to satisfy MdXd = Xd and Xd ⊂ kerNd for some
explicit linear maps Md and Nd. In the case d = 1, this vector space is closely related
to the vector space X1 defined here. Precisely, the vector space Xd from [FP22] is the
projection of the vector space X1 onto the space where only the coefficients between
νP and ⌈− valA−1/(p − 1)⌉ are taken into account. The map Md corresponds to the
restriction of the map M introduced here to this vector space, and the matrix Nd

corresponds to the projection of this map onto its coefficients between pνP + valA−1

and νP − 1, whenever pνP + valA−1 ≤ νP − 1.

4.2. Construction of an admissible pair. Algorithm 1 relies on the following key-
lemma.

Lemma 12. We have dimXr ≥ m for some r ≥ 0. For such an r, there exists a basis
e1,1, . . . , e1,m1 , e2,1, . . . , er,mr of Xr fitting with the nested sequence X1 ⊂ X2 ⊂ · · ·Xr,
such that the following holds: letting Ej, j ∈ {1, . . . , r} denote the matrix with columns
ej,1, . . . , ej,mj , there exists Θj ∈ GLmj (K) such that

(25) Ej −MEjΘj ∈ Uj−1 .

Remark. Using (25), we can write for each j ≥ 2,

Ej −MEjΘj =
∑
i<j

∑
k∈S′

p

MkEiΘi,j,k

for some matrices Θi,j,k with coefficients in K. Then, from Proposition 7, there is an
admissible pair (P,Θ) with π(P ) = (E1| · · · |Er). In particular, dimXr = m.

Proof of Lemma 12. We start with the first statement. Let K denote the algebraic
closure of K and V0(K), Xj(K), Uj(K) denote the K-vector spaces spanned by V0, Xj

and Uj respectively. Note that dimKXj(K) = dimKXj . For any j ∈ {1, . . . , r}, we
claim that Xj(K) is the greatest K-vector space X for which MX ⊂ X+ Uj−1(K) and

X ⊂MX+Uj−1(K). Indeed, since M has coefficients in K, such equations are defined
over K and the result follows6 from the definition of Xj .

Let (P,Θ) be admissible for the system over K((z)), with P ∈ GLm(K((z)). Such
a pair exists thanks to Proposition 4. Let P = (Q1| · · · |Qr) denote the decomposition
of P fitting with the block decomposition of Θ. Let Ej := π(Qj) and let Ej be the

K-vector space spanned by its columns. By Lemma 9, the dimension of E1 + · · ·+ Er

is equal to m. We are going to prove by induction on j ≥ 1 that Ej ⊂ Xj(K). When

6This also follows by applying Lemma 11 twice, once with K and once with K as a base field, and
noticing that the vector spaces Fj,ℓ built in the latter case are obtained from the ones built in the

former case by extension of the scalars from K to K.
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j = 1, (17) implies that E1 = ME1Θ1, which implies that ME1 = E1. By maximality
of X1(K), E1 ⊂ X1(K). Let j ≥ 2 and suppose that Ei ⊂ Xi(K) for every i < j. From
(17) we deduce that

Ej = MEjΘj +
∑
i<j

0∑
l=νΘ

MlEiΘi,j,l .

Since Ei ⊂ Xi(K) for every i < j, the column vectors of the second term in the
right-hand side belong to Uj−1(K). Since Θj is invertible, we get that

MEj ⊂ Ej + Uj−1(K) and Ej ⊂MEj + Uj−1(K) .

By maximality of Xj(K), Ej ⊂ Xj(K). This ends the induction. Now, since Xi ⊂ Xj

when i ≤ j, we have E1 + · · ·+ Er ⊂ Xr(K). Thus,

dimKXr = dimKXr(K) ≥ dimK E1 + · · ·+ Er = m.

Let us now prove that we can find a basis of Xr as mentioned in the lemma. We
only have to prove by induction on j that, for each j ≥ 1, we can find ej,1, . . . , ej,mj

with the desired properties.
Let j = 1. Then, any basis e1,1, . . . , e1,m1 of X1 has the required property, since in

that case (25) reads E1 = ME1Θ1, which is true since X1 = MX1.
Suppose j ≥ 2 and that we have built e1,1, . . . , ej−1,mj−1 . Since Xj−1 ⊂ Uj−1 ∩ Xj

by Lemma 10, we may decompose Xj as follows

Xj = Xj−1 ⊕Y⊕ Z

where Y is any supplementary space of Xj−1 within Uj−1 ∩ Xj and Z is any supple-
mentary space of Xj−1⊕Y(= Xj ∩Uj−1) within Xj . Consider a basis ej,1, . . . , ej,s of Y
and ej,s+1, . . . , ej,mj of Z. Let Ej be the associated matrix and write Ej =: (EY|EZ)

its decomposition according to this cut7. Since MXj ⊂ Xj +Uj−1 = Z+Uj−1, we have
M(Y+ Z) ⊂ Z+ Uj−1. Thus, we may write

(26) MEj − EZR ∈ Uj−1

for some rectangular matrix R. Let us prove that R has maximal rank. Let V ⊂ Z be
the vector space spanned by the columns of EZR. Then, (26) implies that M(Y+Z) ⊂
V+ Uj−1. Let v ∈ Z. Then,

v ∈ Z ⊂ Xj ⊂MXj + Uj−1 ⊂MXj−1 +M(Y+ Z) + Uj−1

⊂ Xj−1 + Uj−2 +V+ Uj−1 ⊂ V+ Uj−1

by Lemma 10. Thus, there existsw ∈ V such that v+w ∈ Uj−1. Meanwhile v+w ∈ Z,
since V ⊂ Z. Since Z ∩ Uj−1 = {0}, v +w = 0, that is v = −w ∈ V. Hence V = Z,
that is, R has maximal rank. Thus, one can complete R into an invertible matrix V .
Then, since the columns of EY belongs to Uj−1, we have

MEj − EjV ∈ Uj−1

We conclude by setting Θj := V −1. □

7If Y (resp. Z) is the zero space then EY (resp. EZ) is the empty matrix.
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Algorithm 1: An algorithm to compute Θ and a truncation of P at order µ
where (P,Θ) is an admissible pair.

Input: An integer p ≥ 2 and a square matrix A with coefficients in K((z))
such that d(A) = 1.

Output: A matrix Θ and a truncation of a matrix P up to order µ such that
(P,Θ) is an admissible pair with respect to the system (6).

Set X := {0}. // X will successively be equal to X0,X1,X2, . . .

Let E and U denote the empty lists. // They will respectively host the

matrices E1, . . . , Er and the spaces U0, . . . ,Ur−1.

while dim(X) < m do
// Inductive computation of X1, . . . ,Xr and of E1, . . . , Er.

Set U := spanK(MkX : k ∈ S ′p).
Set F := V0.
Set G := F ∩M−1(F+ U) ∩ (MF+ U).
while F ̸= G do

Set F := G.
Set G := F ∩M−1(F+ U) ∩ (MF+ U).

end
Let Y be a supplementary space of X within U ∩ F.
Let Z be any supplementary space of X⊕Y within F.
Let EY (resp. EZ) be a matrix whose columns form a basis of Y (resp. Z)
and set E = (EY|EZ).
Append E to the list E and U to the list U .
Set X := F.

end

// At this stage E = (E1, . . . , Er), U = (U0, . . . ,Ur−1) and X = Xr.

Set r := card(E).
for j from 1 to r do

Compute an invertible matrix Θj with entries in K such that
Ej −MEjΘj ∈ Uj−1.
Let Θi,j,k be the constant matrices such that
Ej −MEjΘj =

∑
i<j

∑
k∈S′

p
MkEiΘi,j,k.

Let Pj(z) =
∑µ

k=νP
Qj,kz

k be the matrix of Laurent polynomial of valuation

at least νP and degree at most µ such that π(Pj) = Ej .
end

Let P (z) := (P1(z) | · · · | Pr(z)) and let Θ be the block upper triangular matrix
with diagonal blocks Θ1, . . . ,Θr and whose (i, j)th block is
Θi,j(z) =

∑
k∈S′

p
Θi,j,kz

k when i < j.

return (P ,Θ).

Algorithm 1 returns the truncation of P up to order µ. Indeed, it is not difficult
to check that at the end of the first ‘while’ loop we have X = Xr and the matrices
E1, . . . , Er satisfy (20). Thus, the result follows from Proposition 7. Then, thanks to
Remark 6, it is an easy task to compute coefficients of P with higher orders. Note
that r ≤ m, since the sequence (Xi)1≤i≤r is increasing and, if we had Xi0 = Xi0+1 for
some i0 < r, the sequence would be stationary from this index. Furthermore, for each
j, Lemma 11 implies that ℓj ≤ m(µ− νP +1). Thus the second ‘while’ loop ends after
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at most m(µ − νP + 1) iterations. In the end, it is possible to bound the algorithm’s
complexity. We shall not provide details here.

5. Computing the Hahn and the constant part of a fundamental matrix
of solutions

Throughout Section 5, we assume that K is an effective field which is algebraically
closed. This restriction is necessary to obtain the matrix eC in the required form.
The matrix H could be computed over any field, but presenting it in this generality
would significantly complicate the arguments; therefore, we restrict to the algebraically
closed case. We fix an equation (23) for which d(A) = 1. We fix an admissible pair
(P,Θ) for which we assume P ∈ GLm(K((z))) and Θ ∈ GLm(K[z−1]). Up to a gauge
transformation, we may suppose that Θ is upper triangular. Our goal is to describe the
matrices H and eC that intervene in the decomposition (7) of a fundamental matrix
of solutions. Recall that they satisfy

ϕp(H)C = ΘH and ϕp(eC) = CeC

where C is the (upper triangular) constant term of Θ.

5.1. Computing the matrix of Hahn series. The general form (7) of a fundamental
matrix of solutions guarantees that there exists a matrix H ∈ GLm(HK) such that
ϕp(H)C = ΘH, where C is the constant part of Θ. More precisely, it is established in
[FR25] that one may take H to be upper triangular with only 1s on the diagonal and
upper triangular entries with support in the set of negative rational numbers —a fact
we will reprove here. Let θi,j(z) ∈ K[z−1], i < j, denote the upper diagonal entries
of Θ and θ1, . . . , θm ∈ K denote its diagonal entries. Let ci,j , i < j, denote the upper
diagonal entries of C, that is, the constant term of θi,j(z). An upper triangular matrix
H = (hi,j)i,j with the identity on the diagonal and upper diagonal entries with support
in Q<0 satisfies ϕp(H)C = ΘH if and only if, for any i, j,

(27) θjhi,j(z
p)− θihi,j(z) =

j−1∑
k=i+1

θi,k(z)hk,j(z) + θi,j(z)− ci,j −
j−1∑

l=i+1

cl,jhi,l(z
p) .

The right-hand side of the equality has support in the set of negative rational numbers
since θi,j(z) − ci,j ∈ z−1K[z−1]. Consider the order ≺ on {(i, j) : i < j} introduced
in the proof of Proposition 5 and defined by (k, l) ≺ (i, j) if and only if either l = j
and k > i, or l < j. Then, the hk,j and hi,l intervening in the right-hand side are such
that (k, j) ≺ (i, j) and (i, l) ≺ (i, j). Thus, the Hahn series hi,j may be computed by
induction on the pairs (i, j).

By linearity, one only needs to consider inhomogeneous equations for which the
second member has one term. We consider three types of equations. Precisely, given
κ, η, τ ∈ K×, γ ∈ Q>0, s ≥ 1 and ω = (u,a) with u = (uk1,...,ks)k1,...,ks ⊂ K a
multi-linear recurrence sequence and a = (a1, . . . , as) we consider the equations

κh(zp)− ηh(z) = τz−γ(28)

κh(zp)− ηh(z) = τz−γξω(z)(29)

κh(zp)− ηh(z) = τξω(z)(30)

Recall that the Hahn series ξω are defined by

ξω(z) :=
∑

k1,··· ,ks≥1

uk1,...,ksz
− a1

pk1
−···− as

pk1+···+ks , with ω := (u,a),
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where u := (uk1,...,ks)k1,...,ks ⊂ K is a multi-linear recurrence sequence and a :=
(a1, . . . , as) ∈ Q>0 for some integer s ≥ 0.

Let us recall some facts about multi-linear recurrence sequences. We follow the
approach from [Sch00]. Let s ≥ 1 be an integer and X = (X1, . . . , Xs) be a s-tuple of
indeterminates. The ring K[X±1] = K[X±1

1 , . . . , X±1
s ] acts on the K-vector space of

sequences KZs
by

(Pu)k1,...,ks :=
∑

i1,...,is∈Z
pi1,...,isuk1+i1,...,ks+is

when P (X) :=
∑

i1,...,is
pi1,...,isX

i1
1 · · ·Xis

s and u := (uk1,...,ks)k1,...,ks . A sequence u ∈
KZs

is multi-linear recurrent if, letting I(u) be the ideal {P ∈ K[X±1] : Pu = 0}, the
quotient K[X±1]/I(u) is a finite dimensional K-vector space. It is actually equivalent
requiring that u is linear recurrent with respect to each of its variables.

Lemma 13. A sequence u = (uk1,...,ks)k1,...,ks ∈ KZs
is multi-linear recurrent if

and only if, for each i ∈ {1, . . . , s} there exist an integer mi ≥ 1 and coefficients
bi,0, . . . , bi,mi, with bi,mibi,0 ̸= 0 such that, for every integers k1, . . . , ks ∈ Z,

(31)

mi∑
j=0

bi,juk1,...,ki−1,ki+j,ki+1,...,ks = 0 .

Proof. We first prove the reverse direction. Identity (31) is equivalent to the fact

that the polynomials
∑mi

j=0 bi,jX
j
i belong to I(u). Thus, the monomials Xj1

1 · · ·X
js
s ,

ji ∈ {0, . . . ,mi − 1}, i ∈ {1, . . . , s}, span the vector space K[X±1]/I(u). A fortiori, it
is finite dimensional. Thus u is multi-linear recurrent.

Conversely, suppose that u is multi-linear recurrent and let m be the dimension of
K[X±1]/I(u). Then, for each i, 1, Xi, X

2
i , . . . , X

m
i ∈ K[X±1] are linearly dependent

modulo I(u). Thus, (31) holds for some mi ≤ m. □

Given a multi-linear recurrence sequence u and a element θ ∈ K, the sequence with
general term

u
[θ]
l,k2,...,ks

:=
l−1∑
k1=1

uk1,...,ksθ
l−k1

is a multi-linear recurrence sequence. We denote it by u[θ]. Indeed, let (31) be the

equations satisfied by u. The sequence u[θ] also satisfies these equations when i ∈
{2, . . . , s}. When i = 1, since

u
[θ]
l+1,k2,...,ks

− θu
[θ]
l,k2,...,ks

= ul,...,ks

we have

b1,mu
[θ]
l+m+1,k2,...,ks

+

m∑
j=1

(b1,j−1 − θb1,j)u
[θ]
l+1,k2,...,ks

− θu
[θ]
l,k2,...,ks

= 0.

Using Lemma 13 we conclude that u[θ] is a multi-linear recurrence sequence.

We are now ready to solve Equations (28), (29) and (30).

Lemma 14. Let κ, η, τ ∈ K× and γ ∈ Q>0. Let s ≥ 1 and ω := (u,a) with u :=
(uk1,...,ks)k1,...,ks and a := (a1, . . . , as). Then:

(i) h(z) := τ
ηξ((uk)k,(γ))

(z) is a solution to (28), where uk := (ηκ−1)k;
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(ii) h(z) := τ
ηξ(v,(γ,a1,...,as))(z) is a solution to (29) where v := (vk0,...,ks)k0,...,ks with

vk0,...,ks := (ηκ−1)k0uk1,...,ks

(iii) h(z) := τ
ηξ(u[ηκ−1],a)

(z) is a solution to (30).

Proof. The proof of (i) is straightforward. Proving that the series from (ii) satisfies
(29) is straighforward too. The fact that the sequence v is multi-linear recurrent is an
immediate consequence of Lemma 13. Let us prove (iii). It is not difficult to check
that the series

h =
τ

η

∑
k≥1

(η
κ

)k
ϕ−k
p (ξω)

satisfies

κh(zp)− ηh(z) = τξω(z).

The fact that h(z) is a well-defined Hahn series is a consequence of [Roq24, Lemma 33].
It only remains to prove that h(z) has the desired form. Making a change of variable
l← k + k1 and setting θ := ηκ−1, we have

h(z) =
τ

η

∑
k≥1

θkϕ−k
p (ξω)

=
τ

η

∑
k,k1,...,ks≥1

uk1,...,ksθ
kz

− a1

pk+k1
−···− as

pk+k1+···+ks

=
τ

η

∑
l≥2

 l−1∑
k1=1

uk1,...,ksθ
l−k1

 z
−a1

pl
− a2

pl+k2
−···− as

pl+k2+···+ks

=
τ

η

∑
l,k2,...,ks≥1

u
[θ]
l,k2,...,ks

z
−a1

pl
− a2

pl+k2
−···− as

pl+k2+···+ks

=
τ

η
ξ(u[θ],a)(z) .

□

This enables us to compute the matrix H explicitly.

Algorithm 2: An algorithm to compute the matrix H

Input: An upper triangular matrix Θ, with non-zero constant diagonal entries
and upper diagonal entries in K[z−1]

Output: A matrix H with coefficients in spanK{ξω : ω ∈ Ω} such that
ϕp(H)C = ΘH

Set hi,j := 0 for 1 ≤ j < i ≤ m and hi,i := 1 for every i ∈ {1, . . . ,m};
for (i, j) ∈ {1 ≤ i < j ≤ m} ordered with respect to ≺ do

Using the expressions of hk,l, (k, l) ≺ (i, j) previously computed, decompose
(27) as a finite sum of equations of the form (28), (29) and (30).
Solve each of these equations by the formulas given in Lemma 14.
Set hi,j to be the sum of these solutions.

end
return H := (hi,j)i,j .



22

Remark. When K has characteristic 0, the sequences with general term

(32) kα1
1 · · · k

αs
s θk11 · · · θ

ks
s , α1, . . . , αs ∈ Z≥0, θ1, . . . , θs ∈ K×

form a basis of the K-vector space of multi-linear recurrence sequences [Sch00, Theo-
rem 2.1, Lemma 2.2]. In that case, the set {ξω, ω ∈ Ω} coincides with the K-vector
space spanned by the Hahn series introduced in [FR25]. It is not difficult to adapt
Algorithm 2 so that it returns the entries of H as linear combinations of some ξ(u,a)
with u of the form (32). Indeed, using Lemma 14, the only delicate task is to express

u[θ] under this form when the general term of u satisfies (32). Under this assumption,

the general term of u[θ] is

u
[θ]
l,k2,...,ks

=

 l−1∑
k1=1

kα1
1 (θ1θ

−1)k1

 kα2
2 · · · k

αs
s θlθk22 · · · θ

ks
s .

Thus, one only has to express
∑l−1

k=1 k
α1(θ1θ

−1)k under the desired form. When θ1θ
−1 =

1, Faulhaber’s formula describes it as an explicit polynomial of degree α1 + 1 in l.
When θ1θ

−1 ̸= 1, one can find a polynomial P (X) and a number γ ∈ K, depending

on α1, θ1, θ, such that
∑l−1

k=1 k
α1(θ1θ

−1)k = P (l)(θ1θ
−1)l + γ. Explicit formulas may

easily be found by applying α1 times the operator λ ∂
∂λ on both sides of the identity∑l−1

k=1 λ
k = λl−1

λ−1 and setting λ := θ1θ
−1.

To conclude this section, and for the sake of completeness, let us explain why the
Hahn series ξω are solutions of p-Mahler equations. Since this result is not necessary to
prove Theorem 1 and Theorem 2, we shall be brief. When the characteristic of K is 0,
this result is proved in [FR25] using the fact that any multi-linear recurrence sequence

is a linear combination of sequences with general term kα1
1 · · · kαs

s λk1
1 · · ·λks

s . This
approach does not work in positive characteristic (consider, for example, the sequence
⌊k/p⌋ mod p in Fp). Fix a Hahn series ξω. Let s be the associated parameter. If
s = 0 then ξω = 1 is a solution of a p-Mahler equation. Suppose that s ≥ 1 and that
the result holds for any ξω′ with s′ < s. Keeping the notation of Lemma 13, it is
straightforward that

b1,0ξω(z) + b1,1ξω(z
p) + · · ·+ b1,m1ξω

(
zp

m1
)

is a linear combination of some z−γξω′ where the parameter s′ associated to each ω′ is
s− 1. By induction hypothesis, ξω is a solution of an inhomogeneous equation whose
right-hand side is itself a solution of a p-Mahler equation. It is classical that ξω is then
a solution of a p-Mahler equation.

5.2. Computing solutions of constant systems. Let C denote a non-singular con-
stant matrix. The last step consists in computing a matrix eC whose entries are
K-linear combinations of the ecℓ

j such that ϕp(eC) = CeC . The strategy is explic-
itly described in [FR25]. Let us recall it briefly. Let C = DU be the multiplicative
Dunford-Jordan decomposition of C, where D is diagonalizable, U is unipotent, and D

and U commute. Set ℓ[k] := ℓ(ℓ−1)···(ℓ−k+1)
k! when k ∈ Z≥0. Then, since (U − I)m = 0,

the matrix

eU :=

m−1∑
k=0

ℓ[k](U − I)k

satisfies ϕp(eU ) = UeU . Let Q ∈ GLm(K) be such that QDQ−1 = diag(c1, . . . , cm),
with c1, . . . , cm ∈ K×. Then, eD := Qdiag(ec1 , . . . , ecm)Q

−1 satisfies ϕp(eD) = DeD.
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Eventually, since D and U commute, eU and eD commute and eC := eDeU satisfies
ϕp(eC) = CeC . This leads to the following algorithm.

Algorithm 3: An algorithm to compute a fundamental matrix of solution to
a constant system

Input: A constant matrix C with coefficients in K.
Output: The matrix eC .
Write C = DU ;

Set eU :=
∑m−1

k=0 ℓ[k](U − I)k;

Let Q ∈ GLm(K) be such that QDQ−1 = diag(c1, . . . , cm) is diagonal;

Set eD := Qdiag(ec1 , . . . , ecm)Q
−1;

return eDeU ;

5.3. On the necessity for the base field to be algebraically closed. We claim
that, when K is not algebraically closed, it is not always possible to build a matrix
eC whose entries are linear combinations of some ecℓ with c ∈ K×. Let us justify this.
Over the base field Q we consider the matrix

C :=

(
0 1
−1 0

)

Algorithm 3 returns the matrix

eC :=

(
1
2(ei + e−i)

i
2(e−i − ei)

i
2(ei − e−i)

1
2(ei + e−i)

)

Since the elements ec, c ∈ Q, are linearly independent over HQ[ℓ] and since the solution

eC of the system ϕp(Y ) = CY is unique up to right product by an element of GLm(Q),
there exists no such solution whose entries are linear combinations of the elements ecℓ

j ,
c ∈ Q, j ∈ Z≥0.

5.4. Description of the main algorithm. Recall that, to any equation (2), we can
associate a Mahler system by considering the companion matrix

A :=


1

. . .

1
− a0

am
· · · · · · −am−1

am
.

 .

Then, finding a basis of solutions to (2) amounts to computing a fundamental matrix
of solutions to the associated system. This is the strategy which justifies Algorithm 4.
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Algorithm 4:An algorithm to compute a basis of solution to a Mahler equation

Input: A Mahler equation (2) and an integer n
Output: A basis of solution in the form (5), with a truncation of the series

fi,c,j,ω up to order n
Let A denote the companion matrix associated to this equation;

Compute d := d(A);

if d ̸= 1 then
replace A with A(zd);

end

Let (P ,Θ) be the output of Algorithm 1 when taking A as input;
Compute the coefficients Pk of the Puiseux matrix P up to order dn thanks to
(17);

Replace P with this new matrix;

Compute Q ∈ GLm(K) such that QΘQ−1 is upper triangular;

Replace P with PQ−1 and Θ with QΘQ−1;

Let H be the output of Algorithm 2 taking Θ as input;

Let eC be the output of Algorithm 3 taking the constant term of Θ as input;

return the first row of P (z1/d)H(z1/d)eC .

Remark. In the last step of this algorithm, one has to deal with terms of the form
ξω(z

1/d). However, up to replace the tuple a with a/d, such a term is of the form ξω′

for some ω′ ∈ Ω. Thus, Algorithm 4 returns a basis of solutions of the desired form.
As already mentioned, the decomposition (5) is not unique. Nevertheless, when K

has characteristic 0, it is possible to make it unique. Consider the set Ω0 of pairs
ω := (u,a) where

• u has a general term of the form kα1
1 · · · kαs

s λk1
1 · · ·λks

s , where α1, . . . , αs ∈ Z≥0

and λ1, . . . , λs ∈ K
×
;

• a is a tuple of positive rational numbers whose denominator is coprime with
p and whose numerator is not divisible by p (recall that p is not necessarily
prime).

A decomposition (5) for which each ω belongs to Ω0 is called standard in [FR25] and
such a decomposition always exists. Passing from any decomposition to the standard
one is not difficult. Details are provided in [FR25, Section 5.1.2].

5.5. Computing an equation for each Puiseux series appearing in (5). Al-
gorithm 4 returns a list (y1, . . . , ym) of solutions of a p-Mahler equation (11), of the
form

yi =
∑
c∈K0

j0∑
j=0

∑
ω∈Ω1

fi,c,j,ω(z)ξωecℓ
j

where K0,Ω1 are finite sets and fi,c,j,ω are Puiseux series whose expansion up to zn is
computed. As mentioned in the introduction, each series can be uniquely determined
by providing a p-Mahler equation it satisfies. The construction is as follows. These
Puiseux series fi,c,j,ω are explicit K-linear combinations of the entries of the matrix
P , the first matrix of an admissible pair (P,Θ). The equation satisfied by a sum of
p-Mahler Puiseux series can be easily determined from the equations satisfied by each
term. Hence, one only has to compute an equation for each entry of P . Let fi,j be the
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(i, j)-th entry of P . From ϕp(P )Θ = AP we deduce that for each k,

fi,j(z
pk) =

(
ϕk−1
p (A) · · ·ϕp(A)APΘ−1ϕp(Θ)−1 · · ·ϕk−1

p (Θ)−1
)
i,j

Thus, the m2 + 1 series fi,j(z), . . . , fi,j

(
zp

m2)
are explicit linear combinations of the

m2 entries of P . One readily deduces a p-Mahler equation satisfied by fi,j .

6. Examples

Let us first run Algorithm 4 on an example in characteristic 0. Consider the Rudin-
Shapiro equation

(33) y(z) + (z − 1)y(z2)− 2zy(z4) = 0 .

Here we have p = 2 and we may take K = Q. We run Algorithm 4 with this equation
as input and the integer n := 9. It computes the companion matrix

A(z) =

(
0 1
1
2z

z−1
2z

)
.

associated with (33). The associated Newton polygon is the convex hull of the set
{(1, i), (2, j), (4, k) : i, j ≥ 0, k ≥ 1}. Its slopes are 0 and 1

2 so that d(A) = 1.

Our algorithm calls Algorithm 1 which returns a pair (P ,Θ) with

P =

(
1 + z z
1 1

z − 1 + z

)
, and Θ =

(
1 1

z − 1
0 −1

2

)
.

as we will prove in Section 6.1. Letting P1, P2 denote the columns of P , our algorithm
then computes recursively the coefficients P1,n and P2,n for n ∈ {2, . . . , 9} thanks to

(17). Then it replaces the matrix P with the matrix(
1+z+z2−z3+z4+z5−z6+z7+z8+z9 z− 5

2
z2+ 3

2
z3+ 5

4
z4− 7

4
z5+ 5

4
z6− 1

4
z7− 5

8
z8+ 3

8
z9

1+z2+z4−z6+z7+z9 1
z
−1+z− 3

2
z2+z3+ 1

4
z4−z5+ 1

4
z6+z7− 13

8
z8+z9

)
It then calls Algorithms 2 and 3, which return (see Sections 6.2 and 6.3)

H =

(
1 ξ([−2],1)

0 1

)
and eC =

(
1 2

3e−1
2
− 2

3

0 e− 1
2

)
,

where [−2] = ((−2)k)k ∈ QZ
. Then, Algorithm 4 returns the entries of the first row of

PHeC , that is

f1 := 1 + z + z2 − z3 + z4 + z5 − z6 + z7 + z8 + z9

and f2 := −2
3f1 +

(
f1ξ([−2],1) +

2
3f1 + g

)
e− 1

2
where g is the top-right entry of P .

6.1. Calling Algorithm 1. Since valA = −1 and valA−1 = 0, the parameters (15)
are νP = −1, νΘ = −1, ν = −3, and µ = 1. Write A−1(z) = B0 +B1z with

B0 :=

(
1 0
1 0

)
and B1 :=

(
−1 2
0 0

)
.

One checks that M = M0 and M1 have the following block-decomposition

M0 =

0 0 0 0 0
0 0 B0 0 0
0 0 B1 0 0
0 0 0 B0 0
0 0 0 B1 0

 and M−1 =

0 0 B0 0 0
0 0 B1 0 0
0 0 0 B0 0
0 0 0 B1 0
0 0 0 0 B0


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where 0 denotes the zero matrix of size 2×2. Algorithm 1 is initialized with X := {0},
E := () and U := ().

First iteration of the main ‘while’ loop. Entering the main ‘while’ loop, it sets U := {0},
F := V0 and computes

G := V0 ∩M−1V0 ∩MV0 = {t(0, 0, 0, 0, 0, 0, λ1, λ1, λ2, 0) : λ1, λ2 ∈ Q}
▶Execution of the inner ‘while’ loop

• Since G ̸= F, it enters the inner ‘while’ loop and it sets F := G. Then, it
computes the new space G:

G := F ∩M−1F ∩MF = spanQ{e1}.

where e1 :=
t(0, 0, 0, 0, 0, 0, 1, 1, 1, 0).

• Since G ̸= F, it enters this inner loop a second time. The computation at that
stage leaves G unchanged. Thus, our algorithm exits this loop.

Since X = U = {0}, it sets Y := {0} and Z := spanQ{e1}. Thus EY is the empty
matrix and E = EZ = e1. The algorithm appends e1 to E and the zero space to U so
that E = (e1) and U = ({0}). Then it sets X = spanQ{e1}. Since dim(X) = 1 < 2, it
enters a second time the main ‘while’ loop.

Second iteration of the main ‘while’ loop. It sets U := spanQ(M0e1,M1e1) which is the
Q-vector space spanned by e1 and x where

x := t(0, 0, 0, 0, 1, 1, 1, 0, 1, 1) .

Then it sets F := V0. Then, the first computation of G gives

G := {t(0, 0, 0, 0, λ0, λ1, λ1 + λ2, λ2, λ3, λ1) : λ0, λ1, λ2, λ3 ∈ Q}
▶Execution of the inner ‘while’ loop

• Since G ̸= F, it enters the inner ‘while’ loop and it sets F := G. Then, G
becomes

G := {t(0, 0, 0, 0, 0, λ1, λ1 + λ2, λ2, λ3, λ1) : λ1, λ2, λ3 ∈ Q} .
• One more iteration of this ‘while’ loop gives G := spanQ{e1, e2} with

e2 :=
t(0, 0, 0, 0, 0, 1, 0,−1, 1, 1).

• Then, one last iteration leaves G unchanged, so that it exits this loop.

Since e1, e2 and x are linearly independent, we have Y = {(0)} and Z = spanQ{e2}.
Thus EY is the empty matrix and E = EZ = e2. Then, the algorithm appends e2 to
E and the space U to U so that E = (e1, e2) and U = ({0}, spanQ{e1,x}). Then it sets
X := spanQ{e1, e2}. Since dimX = 2, it leaves the main ‘while’ loop.

Execution of the ‘for’ loop. We have r = 2. The algorithm enters the ‘for’ loop. All
blocks of Θ will be 1 × 1 matrices. By some abuse of notation we will write them as
elements of Q. When j = 1, the algorithm sets Θ1 := 1 and

P1 =

(
1 + z
1

)
.

In the second iteration of the loop (with j = 2), it sets Θ2 := −1/2, Θ1,2,0 := −1,
Θ1,2,−1 := 1 and

P2 =

(
z

1
z − 1 + z

)
.
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It exits the ‘for’ loop and returns ((P1, P2),Θ) where

Θ :=

(
1 1

z − 1
0 −1

2

)
.

6.2. Calling Algorithm 2. Algorithm 2 takes as input the matrix Θ. The only entry
of H this algorithm has to compute is h1,2 which satisfies

−1

2
h1,2(z

2)− h1,2(z) =
1

z
.

This is an equation of the form (28) with κ := −1
2 and η := τ := 1. Thanks to Lemma

14, it returns h1,2(z) := ξ([−2],1) =
∑

k≥1(−2)kz−1/2k and

H :=

(
1 ξ([−2],1)

0 1

)
.

6.3. Calling Algorithm 3. Algorithm 3 is called with C =:

(
1 −1
0 −1

2

)
as an input.

The DU decomposition of C is U := Id and D := C. After diagonalizing C, Algorithm
3 returns eC where

eC =

(
1 1
0 −3

2

)(
1 0
0 e− 1

2

)(
1 2

3
0 −2

3

)
=

(
1 2

3e−1
2
− 2

3

0 e− 1
2

)
.

6.4. An equation for the second Puiseux term. Algorithm 4 returns f1 and f2,
which are truncations at order n = 9 of two solutions h1 and h2 to (33). The solution
h1 is a power series solution to (33). By contrast, the solution h2 is of the form

h2 = −
2

3
h1 +

(
h1ξ([−2],1) +

2

3
h1 + h

)
e− 1

2

where h is some power series. Precisely, if P is the matrix of Laurent series whose
truncation is P and who satisfies ϕp(P )Θ = AP , then, h is the top-right entry of
P . Let us explain how to compute a Mahler equation satisfied by h. We let Pi,j

denote the entries of P . In particular, h1 = P1,1 and h = P1,2. Iterating the identity

ϕp(P )Θ = AP and isolating the terms h(z2
k
), k ∈ {0, . . . , 4}, we obtain


h(z)

h(z2)
h(z4)
h(z8)
h(z16)

=



0 1 0 0

0 0
2(1−z)

z
−2

(z−1)2

z3
2
z

(z−1)3

z3
2(z−1)

z

−3z6+4z5+z4

2z7

−4z3+3z2−1
2z7

2(1−z2)

z3

−3z7+7z6−9z5+3z4

2z7

+3z3−3z2+z+1
2z7

−2(z3−z2+z+1)

z3

5z14−8z13−z12+8z11

4z15

−z10−8z9+11z8−8z7

4z15

+3z6−3z4+z2+1
4z15

2(z6−z4+z2+1)

z7

5z15−13z14+17z13−7z12

4z15

−z11−7z10+5z9−3z8

4z15

+3z7−3z6+3z5+3z4

4z15

+z3−z2−z−1
4z15

2z7−2z6+2z5

z7

+2z4+2z3

z7

−2z2−2z−2
z7



P1,1(z)

P1,2(z)
P2,1(z)

P2,2(z)



Looking at a vector in the left-kernel of this matrix, we get
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(−2z10−6z9−8z8−8z7−4z6+4z5+8z4+8z3+6z2+2z)h(z)

+(−z11−z9−2z8+2z7+2z5+4z4−z3−z−2)h(z2)

+(z13+z12+z11+3z10+5z9+5z8−2z7−6z6−z5−z4−3z3−z2−z−1)h(z4)

+(−z13−z12+3z11+3z10−4z7−4z6+z5+z4+z3+z2)h(z8)

+(−2z13−2z12+2z11+2z10)h(z16)=0,

which is a 2-Mahler equation satisfied by h.

6.5. Carlitz zeta-function. Let us briefly present an example in positive character-
istic. Let p ≥ 0 be a prime number, θ be a transcendental element over Fp and K
denote the complement of the algebraic closure of Fp((θ

−1)) for the valuation associ-
ated to θ−1. As mentioned in Section 2, the values at 1 of the Carlitz zeta-function,
ζC is equal to f(θ) where f(z) ∈ K[[z]] satisfies

f(zp) + (zp − θ)f(z) = −(zp − θ) .

Thus, f(z) satisfies the following Mahler equation, of order 2:

(34) (zp − θ)(zp
2 − θ)f(z)− (zp − θ − 1)(zp

2 − θ)f(zp)− (zp − θ)f(zp
2
) = 0 .

One easily checks that the Newton polygon associated to this equation has only one
slope which is null. Thus νΘ = νP = ν = µ = 0. The matrix M is then given by the
constant term of the inverse of the matrix of this system, that is

M =

(
1 + θ−1 −θ−1

1 0

)
Thus, it acts as an isomorphism on V0 := K2. Then, Algorithm 1 returns

P =

(
1 1
1 θ

)
and Θ =

(
1 0
0 θ

)
.

Algorithm 2 returns H = I2 and Algorithm 3 returns

eC =

(
1 0
0 eθ

)
Thus, a basis of solutions of (34) is given by f(z) and g(z)eθ where where f(z) is
defined as above and g(z) satisfies

(zp − θ)(zp
2 − θ)g(z)− θ(zp − θ − 1)(zp

2 − θ)g(zp)− θ2(zp − θ)g(zp
2
) = 0 .
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