COMPUTING BASIS OF SOLUTIONS OF ANY MAHLER
EQUATION

ABSTRACT. Mahler equations arise in a wide range of contexts including the study
of finite automata, regular sequences, algebraic series over Fp(z), and periods of
Drinfeld modules. Introduced a century ago by K. Mahler to study the transcendence
of certain complex numbers, they have recently been the subject of several works
establishing a deep connection between such transcendence properties and the nature
of their solutions. While numerous studies have investigated these solutions, existing
algorithms can only compute them in specific rings: rational functions, power series,
Puiseux series, or Hahn series. This paper solves the problem by providing an
algorithm that computes a complete basis of solutions for any Mahler equation,
along with a decomposition of each solution over the field of Puiseux series. Along
the way, we describe an algorithm that computes a fundamental matrix of solutions
for any Mahler system.
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1. INTRODUCTION

The study of solutions of linear differential equations is a classical and extensive
field of research. Any linear differential equation of order m with coefficients in C((2))
admits a basis of solutions consisting of C-linear combinations of elements of the form

(1) J(2)z"(log 2)FeP 7™
where f(z) is a Gevrey series, a € C, k € Z>g, and P € XC[X]. Various algorithms
have been established for computing such solutions [Tur55, Tou87, Bar97].

The subject of our paper is the so-called Mahler equations. A linear Mahler equation
is an equation of the form

ao(2)y(2) + a1(2)y() + - + am(2)y(z"") = 0
where p > 2 is an integer, aga,, # 0 and ao, ..., a, are, depending on the context,
polynomials, power series, etc. Though less widely known than their differential coun-
terparts, they have been the subject of numerous recent papers due to their connections
with several areas, see the discussion in Section 2. Only quite recently, a general form
for a basis of solutions analogous to (1) has been established for Mahler equations
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(see [FR25]). However, the proof is nonconstructive. Algorithms do exist to compute
rational, power series, Puiseux series [CDDM18], or Hahn series [FR24] solutions of a
given Mahler equation, but none can provide a full basis of solutions. Our paper fills
this gap.

1.1. Linear Mahler equations. Let K be a field and z be an indeterminate. For
each integer p > 2, we consider the map ¢, : K(z) — K(z) defined by z +— 2P. Let R
be a ring extension of K(z) and let ¢, extend to R. A p-Mahler equation over R is a
linear functional equation of the form

(2) aoy + ar1¢p(y) + -+ + amdy'(y) =0

where ag,...,am € R and aga,, # 0. In what follows, we focus on the case where
R = K][[z]]. However, the methods we develop here extend immediately to the case
where R is the field of Puiseux series over K.

Power series —or even Puiseux series— are not sufficient to solve arbitrary Mahler
equations over K[[z]]. A famous example comes from the equation

y(2F) —y(z) =27

for which a quick computation reveals that it has no Puiseux series solution. Mean-
while, the formal series h(z) = 3,5, 27 P* is a solution to this equation. This is
not a Puiseux series, but since its support is a well-ordered subset of the rational
numbers, h(z) is a Hahn series. Generalizing this remark, in [FR25], the authors
proved that!, given an int(gger s > 1, a s-dimensional multi-linear recurrence sequence

5 .. .
u = (Ukl,...,ks)k1,...,ks € K" and a s-tuple of positive rational numbers a = (a1, ..., as),
the Hahn series
%1 . as
(3) £, = Z Upy . ks Z P PR with w o= (u, a)

ki, ks>1

is a solution to some Mahler equation over K[[z]], where we let K denote an algebraic
closure of K. We let ) denote the set of all such tuples w. For convenience, when
s =0 we let £, = 1. The definition and some details about linear recurrent sequences
are given in Section 5.1. When K has characteristic 0, any linear recurrent sequence
can be uniquely written as a linear combination of sequences with general term

(4) RoU ke MR o € 20, Ay A €KL

Hence, we recover the Hahn series introduced in [FR25]. Such a decomposition no
longer holds when K has positive characteristic.

Unfortunately, Hahn series fail to provide full basis of solutions of any Mahler equa-
tions. The equations ¢,(y) = cy with ¢ € K\ {1} or ¢p(y) = y + 1 have no solutions
in the field of Hahn series, as one can check by looking at the hypothetical valuation
of such a solution. However, it is possible to find solutions to these equations in some
formal ring extension of the field of Hahn series. We denote by e, a solution to the
former and by £ a solution to the latter, in such an extension. For convenience, we
also let e; = 1. As mentioned in [FP25, Section 2.2], one can construct such a ring

IWhile the results in [FR25] are stated for K := @Q, those invoked here hold over the algebraic
closure of any field. Since we must reprove these results for algorithmic considerations, we provide
details later in the paper.
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extension with field of constants {f : ¢,(f) = f} = K. Then, it follows from [FR25]
that any Mahler equation over K[[z]] has a basis of solutions? 1, ..., ¥ of the form

(5) Yi = Z Z Zfi,c,j,w(z)gwecﬁj

€K " JEL>0 wEQ

where the f;. ;. are Puiseux series with coefficients in K and each sum has finite
support. When K is of characteristic 0, this decomposition is unique if one restricts w
to the set Qp C Q of tuples w = (u, a) for which w is of the form (4) and the entries
of a have denominators coprime with p and numerators not divisible by p, see [FR25].
The aim of this article is to provide an algorithm to compute such a basis of solutions.

Theorem 1. Let K be an effective field of characteristic 0. Algorithm 4 takes as
input a Mahler equation® over K[[2]] of the form (2) and returns a basis y1,. .., Ym of
solutions of (2) under the form (5). Precisely, it returns:

e q finite set Ko C K", an integer jo > 0, and a finite set Q1 C Qg such that the
supports of the sums (5) are included in Ko x {0,...,jo} x 1,

e an integer d and an integer v such that fi;w(z) € 2 K[[2Y/)] for every
i, ¢, .j7 w,

o the coefficients of the Puiseuzx expansion of each f;. jw(2) up to any prescribed
order.

Remark. (i) The nonzero Puiseux series f; . jw(2) appearing in (5) are also solu-
tions of some p-Mahler equations. Such Puiseux series are uniquely determined
by their associated equation and their first coefficients. It is possible to adapt
Algorithm 4 to associate to each f; . jw(2) a p-Mahler equation it satisfies. In
particular, this allows one to check whether such a series is 0 or whether there
are linear relations, or algebraic relations of a given degree, between them (see
[AF17]).

(ii) Our algorithm can be used to compute solutions in specific rings, such as power,
Puiseux or Hahn series. While it does not improve the existing algorithm for
Puiseux series, it significantly improves the one for Hahn series. Indeed, the
algorithm in [FR24] computes the coefficients of 27 of any Hahn series solution
for exponents « inside a given finite set. Using Theorem 1, given an integer N,
we can provide a closed formula for the coefficients of z7 with |y| < N, which
is an infinite set.

1.2. Linear Mahler systems. Recall that we let ¢, denote the map z — 2P. Al-
though Theorem 1 is about linear equations, the algorithm it refers to relies on our
ability to solve linear systems. A p-Mahler system over K((z)) is a system of the form

(6) Pp(Y) = AY

with A € GL,(K((2))). Let 2k = U1 K((2Y/9)) and P = -, K((21/?)) denote
the fields of Puiseux series with coefficients in K and K respec_tively. Let 5z =
K((29)) denote the field of Hahn series with value group Q and coefficients in K,
that is the set of formal series }_ . ay2” with a, € K such that {y : ay # 0} is a

2A basis of solutions of (2) is a set of m solutions which are linearly independent over the field of
constants K.

3We assume that we are provided with a way to compute as many coefficients as needed in the
power series expansion of ag, ..., am.
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well-ordered subset of Q with respect to the restriction of the order <. The map ¢,
extends to Pk, P and H in the obvious way. Roques and the first author [FR25,
Theorem 17] proved that any p-Mahler system (6) over K((z)) has a fundamental
matriz of solutions of the form

(7) PHec
where
(a) the matrix P € GL,,(%g) is such that © := ¢,(P)"'AP is block upper
triangular with entries in K[zfl/ *] and constant non-singular diagonal blocks;
(b) the matrix H
e belongs to GL,, (%) and satisfies ¢,(H)C = ©H, where C' € GL,,(K) is
the constant term of ©,
e is block upper triangular with blocks fitting with the block decomposition
of © and diagonal blocks equal to the identity;
e has coefficients which are K[2*!/4]-linear combinations of some &,,, w € €,

where d € Z~o; o ‘
(c) the matrix ec has coefficients which are K-linear combinations of the e.¢7,

ceK",je Z>, and satisfies ¢p(ec) = Cee.
We make the computation of such a fundamental matrix of solutions effective.

Theorem 2. Let K be an effective field. Consider a p-Mahler system (6) over K((z)).
Algorithms 1, 2 and 3 provide a fundamental matrixz of solutions of the form (7). More
precisely:
e Algorithm 1 provides a solution to (a) over K, that is a matrix with the required
form © € GL,,,(K[z~Y*]) and a truncation up to any order of a matriz P €
GL (k) of Puiseuz series with coefficients in K such that © = ¢,(P) 1 AP;
o Algorithm 2 provides a solution to (b), that is a description of the entries of
H as K-linear combinations of some €, w € Q;
o Algorithm 3 provides a solution to (c), that is a description of the entries of

. . . : > X .
ec as linear combinations of some e !, c € K™, j € Z>g.

Remark. e It follows from Theorem 2 that a solution to (a) exists with K as a
base field instead of K. Such a fact does not follow from [FR25] directly but is
the consequence of the construction in Section 4. In contrast, it is not always
possible to perform (c¢) on K (see Section 5.3).

e The entries of the matrix H produced by Algorithm 2 are linear combinations
of some &, over the field K, rather than over the ring K[2%1/9] as was the case
in (b). This refines the results from [FR25].

To any linear equation (2) one can associate a system by considering its companion
matrix. If one obtains a fundamental matrix of solutions of this system thanks to
Theorem 2, then one gets a solution as in Theorem 1 by looking at the first row of
PHec.

1.3. Organization of the paper. In Section 2 we discuss connections between Mahler
equations and other areas of research. This section is independent of the remainder of
the paper and may be skipped on a first reading. The main contribution of this paper
is Algorithm 1 whose proof occupies the next two sections. In Section 3 we gather
preliminary results about the matrices P and © introduced in Section 1.2 that will
reduce the problem to a finite-dimensional one over K. In Section 4, we present and
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prove the correctness of Algorithm 1. Once one knows O, in Section 5 we describe
Algorithms 2 and 3 which allow us to compute the matrices H and e, respectively,
introduced in Section 1.2. They provide algorithmic versions of the constructions from
[FR25] and [Roql8]. Then, we state Algorithm 4 which is the core of Theorem 1.
Eventually, in Section 6, we run this algorithm on two examples.

2. APPLICATIONS AND CONNECTIONS

The study of Mahler equations is motivated by their occurrence in diverse areas
of mathematics. The algorithms developed in this paper provide computational tools
relevant to each of these domains. We outline some key connections in what follows.
This material is not needed for the rest of the paper. Thus, the reader should feel free
to proceed directly to Section 3.

Automatic sequences and automatic real numbers. Mahler equations naturally
occur in the study of finite automata. A deterministic finite automaton can be used
as a transducer to produce a sequence (uy)nen where u, denotes the output of the
automaton when it reads the expansion of n in base p (see [AS03] for details). When
the elements u,, belong to some field K, a classical result states that the power series
>, unz™ satisfies some linear Mahler equation with coefficients in K[z] (see [Cob68]).
When K := Q, combined with Mahler’s method, this connection has been used to
establish the following results®:

e the base-b expansion of an irrational algebraic real number cannot be produced
by a finite automaton [Phil5, AF17];

e the expansions in two multiplicatively independent bases of an irrational real
number cannot both be produced by automata [AF25].

It has also been used to reprove and generalize the well-known Cobham’s theorem
[SS19, AF25].

Regular sequences. Regular sequences are a generalization of sequences produced
by a finite automaton. Strictly speaking, the p-regular sequences are the sequences
that may produce a weighted finite automaton when reading the integers written in
base p. Among them one finds the sequences whose nth term is the sum of digits of n
in base p, the p-adic valuation of n or of n!, the complexity of the merge-sort algorithm
in a set with n elements, the number of odd entries in the nth row of Pascal’s triangle,
the nth Cantor number. As established by Becker [Bec94], the generating series of a
p-regular sequence is solution to some p-Mahler equation.

Algebraic power series in Fy[[z]]. When p is prime, the elements of F,[[z]] that
are algebraic over F)[z] are exactly the solutions of linear Mahler equations over F)[z].
Actually, given an algebraic equation over Fp[z], deriving a p-Mahler equation whose
solutions in Fp[[z]] are the power series solutions of the former algebraic equation is
straightforward, using the identity f(2”) = f(2)? in F[[z]]. For example, when p = 2,
any solution to
co + e1y(z) + ey (2)? = 0,
with ¢g, c1,c2 € Fpy[2] and cocrca # 0, satisfies the equation

creoy(2) + (cf — caco)y(2)? — e3y(2)* =0

AThe first result was originally proved using a different approach, see [AB07].
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which, for power series in Fa[[z]], is equivalent to the Mahler equation

2
creoy(z) + (€] — caco)y(2?) — 3y(2*") = 0.

One should note, however, that this does not imply that our main algorithm for Mahler
equations provides all solutions of the initial algebraic equation. Indeed, the identity
f(zP) = f(2)P does not extend to %”E[(ec)c,ﬁ].

Periods of Drinfeld modules. The theory of Drinfeld modules in positive character-
istic provides analogs of numerous famous periods. As shown by Denis [Den00], some
of them arise as values of solutions of Mahler equations. For example, a p-analog of 7
is given by [[,>o(1 —6'7P") in the completion K of the algebraic closure of F,((671)).
This is the value at ! of the function f(2) := [],5o(1 —02"") € K[[2]] which satisfies
the p-Mahler equation -

f(z) = (1=02)f(z") = 0.
Another example is the analog (¢ of the classical Riemann ¢ function. Carlitz [Car35]

proved that (c(s) = fs(0) for s € {1,...,p — 1}, where fs(z) € K][[2]] satisfies the
inhomogeneous p-Mahler equation

[s(27) = (=1)°(2" = 0)° fs(2) = (=1)°(z" = 0)°.

Using this equation, Dennis [Den06] was able to prove the algebraic independence of
Cc(1),...,¢c(p—1) over Fp(0) (see also [Ferl8]).

Purity results. When considering the minimal differential equation satisfied by some
E-function, André [And00] proved that the functions f(z) appearing in (1) are E-
functions as well. Surprisingly, such a “purity theorem”, which does not concern the
values of these functions, implies the celebrated Siegel-Shidlovskii theorem on algebraic
relations between values of E-functions at algebraic points and even some remarkable
refinements due to Beukers [Beu06]. A purity theorem analogous to André’s has re-
cently been established in the framework of Mahler equations [FR25] and similarly
shares a deep connection with results concerning the values of solutions of these equa-
tions [ABS23]. One instance of this result is the following: if (2) is the minimal Mahler
equation satisfied by some p-regular power series, then it has a basis of solutions of the
form (5) for which each of the series f; . is p-regular too.

Galois theory of Mahler equations. Recent results have established that any al-
gebraic relation between values of solutions of Mahler equations at some nonzero alge-
braic point has a functional origin (see [AF24]). The study of functional relations is a
delicate task and constitutes the subject of difference Galois theory. The Galois group
of a Mahler system (6) is a linear algebraic group which encodes the relations between
the entries of any fundamental matrix of solutions. From this point of view, being
able to compute a fundamental matrix of solutions of a Mahler system as in Theorem
2 should be of some help to understand the algebraic relations between solutions of
Mahler equations.

3. PROPERTIES OF THE PUISEUX PART OF A FUNDAMENTAL MATRIX OF SOLUTIONS

We fix an integer p > 2, a field K and let K denote an algebraic closure of K. The
general form (7) of a fundamental matrix of solutions leads us to look for pairs (P, ©)
satisfying Condition (a). This section is devoted to the study of such pairs.
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Definition 3. We say that a pair of m x m matrices (P, ©) is admissible with respect
to (6) if the following holds:

e O is block upper triangular with entries in K[271/*] and has non-singular con-
stant diagonal blocks;
e P e GL,,(Pk) is such that

(8) ¢p(P)O = AP.

3.1. Equations, systems and modules. We briefly recall the vocabulary of equa-
tions, systems and modules.

Let 7% denote the field of Hahn series with coefficients in K and value group Q.
An element of i is a formal series f(z) = > g fy27 with f, € K such that the set
{v: fy # 0} is a well-ordered subset of Q for the total order <. This guarantees that
i 1s a field extension of K((z)) (see [Roql8] for details).

Given a subfield F of ., we say that two p-Mahler systems ¢,(Y) = AY and
¢p(Y) = BY are F-equivalent if there exists a matrix F' € GL,,(F) such that A =
¢p(F)BF~!. When K is algebraically closed, by the cyclic vector lemma® [FP22], any
p-Mahler system

(9) op(Y) =AY,  A(z) € GLn(F)
is F-equivalent to a p-Mahler system whose matrix is of the form
0 1 0o --- 0
(10) B = y
0 1
ag o e e et
where ag,...,am_1 € F, apam—1 # 0. A vector Y is solution to the p-Mahler system

with matrix B if and only if Y = *(y, ¢p(v), .-, ¢y~ 1(y)) for some y solution to the
following p-Mahler equation

(11) agy + a1¢p(y) + -+ am-10)" " (y) — o (y) = 0.

Consider the ring Py := F(®) of non-commutative polynomials in the indeterminate
® with the property that ®f = ¢,(f)® for any f € F. To any companion matrix B as
in (10) we associate the operator Lg = ag + a1® + - - - + a1 ®™ 1 — ®™. Then (11)
may be rewritten as Lg(y) = 0.

To any system (9), we can associate a Zp-module My of finite rank as follows: the
underlying F-vector space is ™™ and ® acts on F™ by

Yo €F™ ®(v) = A g,(v).

Conversely, to any Zp-module M of finite rank we can associate a Mahler system by
choosing a basis. It is not difficult to prove that if ¢,(Y) = AY and ¢,(Y) = BY are
F-equivalent then the Zp-modules M4 and Mp are isomorphic. Furthermore, if B is
a companion matrix, Mp is isomorphic to the module Zr/Zr L.

To any operator L = ag + a1® + - - + 0, @™ € Y we associate a Newton polygon
N(L), which is the convex hull of the set of points {(p’,5) : 0 <i<m, j > vala;}.
We let p1, ..., 1 € Q denote the finite slopes of N(L). Let d(L) be the least integer

5The proof in [FP22] is written over Q(z) but it works over F since its field of coefficients K is
algebraically closed, hence, infinite.
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d such that p1,...,u, € d *Z[p~!]. This is the least integer d relatively prime with p
and such that the denominators of p, ..., u, divide dp¥ for some k.

3.2. Ramification order of an admissible pair. Recall that we assume K to be
algebraically closed. We now take F := K((z)) and consider a Mahler system

(12) op(Y) =AY, A(z) € GL,(K((2))).

Then, the module My is isomorphic to some Pk (,))-module Pk ((.))/ Pk ((z))L- We
set d(A) := d(L). It can be proved that this does not depend on the choices of L such
that Ma ~ Zk((.))/ P ((z)) L, a fact we do not need here. Note that d(A(z¥ ) =1
for any matrix A, so we can always reduce to the case where d(A) = 1. Note also that
d(A) | p™ — 1 so that d(A(zP" 1)) = 1.

Proposition 4. Suppose that K is algebraically closed. Then, the system (12) admits
an admissible pair (P, ©) such that P and © have entries in K((z'/44)).

As mentioned in the introduction, we will obtain as a by-product of Algorithm 1
that this proposition still holds when K is not algebraically closed.

Proof. Up to replacing z by 2%4), we may assume that d(A) = 1. Then, Proposition 4

can be reformulated as follows: the system (12) is K((2))-equivalent to a block upper
triangular system with matriz in GL,,(K[271]) and constant diagonal blocks. Since we
closely follow the proof of Step 1 in [FR25, Theorem 17], we shall be brief and present
only the necessary adaptations. The existence of an admissible pair follows from a
construction in two parts. The first one is a factorization of Mahler operators which
implies that any Mahler system is Puiseux-equivalent to an upper triangular system
with constant diagonal coefficients and Puiseux above-diagonal coefficients. The second
part is a construction which implies that such a system is Puiseux-equivalent to a
block upper triangular system with constant diagonal blocks and whose above-diagonal
blocks have entries in K[27!]. We only have to explain that these two steps may be
carried out over K((z)) instead of the field of Puiseux series and that K may be any
algebraically closed field.

Part 1: Factorization of Mahler operators. We prove the following claim: if L € P (.))
is such that d(L) = 1, then one has L = Ly --- Ly, with L; € Pk ((.y) of degree 1 in ®.

The proof is an adaptation of the one of [Roq24, Proposition 15]. By induction, it
is enough to prove that L admits a factorization L = M N, with M, N € Pk (.)), N
of degree 1 in ® and d(M) = 1 (then, apply the induction hypothesis to M). The
first slope p1 of N'(L) is of the form py = a/(p¥ — 1) for some a € Z and k > 1.
Since d(L) = 1, up has to be an integer. Without loss of generality, we may suppose
that p; = 0. Indeed, with the notation of [Roq24], this amounts in replacing L with
L], which does not modify d(L) since y; € Z ([Roq24, Lemma 17]). By [Roq24,
Lemma 20], there exists f € % such that f(0) = 1 and L(fe.) = 0 for some ¢ € K*.
The proof given there readily extends to any algebraically closed field K. Since L has
coefficients in K((2)), f actually belongs to K((2)) (see [FP25, Lemma 28]). Let M
denote the result of the right Euclidian division of L by N := (® —¢)f~! in DK ((2))-
Then M € Pk ((»)) and L = M N. By [Roq24, Lemma 21], each slope of M is p times
a slope of L. A fortiori, d(M) = 1. This proves the claim.

Part 2: Reduction to K[z7']. Let L € Zk () be such that Ma ~ Pk ((.))/ Pk ()L
From the first step, there exists L1, ..., Ly € Zk((.)) of order 1 such that

L=1Ly - -Ly,.
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Arguing as in [FR25, Section 4.1.1], we conclude that the Mahler system (12) is K((2))-
equivalent to an upper triangular system with constant diagonal coefficients and above-
diagonal coefficients in K((z)). Then we follow the construction in [FR25, Section 4.1.2]
without any modification. The key argument is that [FR25, Lemma 20] remains valid
when one replaces the field of Puiseux series with K((z)) and when K is any field. The
remainder of the construction proceeds identically. O

3.3. Valuations of an admissible pair. The aim of this section is to bound from
below val P and val © for some admissible pair (P, 0). We consider the following set

Sp={s€Z : ptstuU{0}
of non-positive integers either equal to 0 or not divisible by p.

Proposition 5. Suppose that K is algebraically closed and consider a Mahler system
(12) with d(A) = 1. Then, there exists an admissible pair (P,©) for which

(i) P € GL,,(K((2))) and © has support in Sp;

(ii) one has

1A 14 — I(det A
VadPZVa 5 and vad@zpmva pval(de )

p— p—1
Furthermore, each admissible pair satisfying (1) also satisfies (ii).

The proof is divided in two steps, corresponding respectively to (i) and (ii).

3.3.1. Proof of (i) of Proposition 5. By Proposition 4, the system has an admissible
pair (P,0) with P € GL,,(K((2))) and © € GL,,,(K[z71]). Since K is algebraically
closed, there exists such pair with © upper triangular. For such pairs we let 01, ...,0,,
denote the diagonal entries of © and 6; j(z2), i < j, denote its above diagonal entries.

Let Z := {(i,j) € {1,...,m}?> : i < j}. We define an order on Z as follows:
(4,7) < (k,1) if either j <l or (j =1 and ¢ > k). To scan the above-diagonal entries of
©O(z) with respect to this order one proceeds from left-to-right and then from bottom-
to-top.

Suppose by contradiction that there exists no admissible pairs (P, ©) for which P €
GL,,(K((2))) and © is uper triangular with support is in S,. Thus, for any admissible
pair (P,©) with P € GL,,,(K((z))) and © upper triangular, there exists (i, j) € Z such
that 0; j(z) has a non-zero multiple of p in its support: we let (i@, jg) be the least of
them with respect to <. Consider the pairs (P, ©) such that (ig, jo) takes its maximal
value with respect to < and let (ip, jo) denote this value. Recall that, for any (P, O)
such that (ie,jo) = (io, jo), the support of ©; ;(z) for each (4, j) < (i, jo) is included
in S,. Furthermore, by assumption, for any pair (P, ©) such that (ie,jeo) = (%0, jo),
there exists v € Z~¢ such that 277 belongs to the support of ;, j,(z) € K[z7!]. When
the pair (P, ©) is fixed, we let vg denote the greatest such v. Then, we let 1y denote
the minimum of the integers vg, among all the pairs (P, ©) for which (ie, jo) = (i0, jo)-
From now on we fix a pair (P, ©) with (ie, jo) = (i0, jo) and ve = vy. We shall obtain
a contradiction.

Let 1 denote the coefficient of z7*7 in 6;, ;,(z). Let M denote the matrix which is
the identity but for its (ig, jo)th entry which is equal to 776?]._01,2’*”0. Set

0 = ¢,(M)reM.
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This matrix is upper triangular, with diagonal coefficients 61, ..., 0, and above diag-
onal coefficients in K[z~!]. Furthermore, when (i, j) < (o, jo) the (i, j)th coefficient
of © is the same as the one of © and the (ig, jo)th coefficient of © is equal to

(13) Big o (2) 1= Big o (2) — 02 ™" + by 03,1277

Last, setting P = PM we have qﬁp(ﬁ)é — AP so that the pair (P,©) is admissible.

By maximality of (o, jo), the support of 6;, j,(2) has an element of the form —pup, for
some p € Z>1. By minimality of vy, p1 > 1. This contradicts (13). O

3.3.2. Proof of (ii) of Proposition 5. Let (P,©) be an admissible pair satisfying (i).
Up to conjugation we may and will assume that © is upper triangular. We start by
establishing the lower bound on val P. Let Pi,..., P, enumerate the columns of P
from left to right. We proceed by contradiction. Suppose that the lower bound for
val P does not hold and let i be the least integer such that val P; < val A/(p — 1). We
let

91(2), .. .,01‘,1(2),)\1’,0, e ,0

denote the entries of the ith column of ©(z). Then, we infer from (8) that

Nidp(P;) = AP; — 01(2)p(P1) — - — 0i-1(2)pp(Pi—-1)

Since val P; < valA/(p — 1), we have val(AP;) > val(A4) + val(P;) > pval(P;) =
val(Ai¢p(P;)). Thus, the valuation of ¢,(P;) is equal to the valuation of

01(2)p(P1) + -+ + 0i—1(2)dp(Fiz1) -

Such a valuation is of the form v+ ppu, where v is in the support of some 6;(z), 1 < j < 1,
and g > minj; val(Pj). Since val(¢,(P;)) = pval(P;), p must divide v. Since v € S,
we have v = 0. Thus, val P; = ¢ > minj; val(P;) > val A/(p — 1), a contradiction.

To establish the bound for val © we first bound val P~! from below. Since © is upper
triangular with invertible constant diagonal entries, det © € K*. Hence, valdet ©® = 0
and we infer from (8) that

val(det A)

(14) val(det P) = o

From the formula P~! = (det P)~!'Com P, we deduce that

val P! = val(Com P) — val(det P)

val(det A) S (m —1)val A — val(det A)

> —1)val P —
>(m—1)va P P

Last, since © = ¢,(P~)AP, we have

pmval A — pval(det A)

val® > pval P~ +val A + val P > 1
p—




Computing fundamental matrices of solutions of Mahler systems 11

3.4. Laurent series expansion of P. We fix a Mahler system (12) for which d(A) =
1. We do not necessarily assume that K is algebraically closed. Note that if (P, ©) is
admissible it remains so when considering the equation over K((z)). In particular, the
conclusion of Proposition 5 remains true. In the remainder of the paper we shall take
the following notation:

1A — | A 1A
Vg := min {v > pmva pval(det 4) T ESP}, vp = {Va -‘ ,

p—1 p—1
(15) v := min{vp, pvp + val A7} + vg,
{ { val A= + I/@—‘ val det(A)
pi=max< | — ,
p—1 p—1

—(m—l)Vp}.

The integers vp and vg should be considered as lower bounds for the valuations of the
components of an admissible pair (P, ©). Since val(det A) > mval A we have vg < 0.
Last, it follows from (14) that p is an integer.

Given an admissible pair (P, ©) —if such a pair exists— one can group the columns
of P according to the block decomposition of ©. The aim of this section is to establish
recurrence formulas for the Laurent series expansion of these groups of columns.

3.4.1. A recurrence formula for the blocks of columns. Let P € GL,,(K((z))) and let
O € GL,,(K[z7!]) be block upper triangular with blocks of sizes by, . . . , b, respectively,
support in S, val(P) > vp and val©® > vg. We do not assume at this stage that
(P,©) is an admissible pair. We partition the columns of P according to the block
decomposition of © and denote by Q1,...,Qs the corresponding matrices. Precisely,
Q;j is the m x b; matrix consisting of the columns by +---4+bj_1 +1to by +--- 4+ b;
of P. For i < j we let ©; j(z) denote the (4, j)-th block of ©, which is a b; x b; matrix
and O1,...,0, denote its diagonal blocks. We infer from Definition 3 that the pair
(P, ®) is admissible if and only if ¢,(P)O = AP, that is, if and only if

j—1

(16)  Vie{l,...,s}, Q;(2) = A 1(2)Q; ()0, + ZA_l(z)Qi(zp)@m(z) :

=1

By assumption, we may write

0
QJ(Z) = Z ijzk, @m-(z) = Z @Z”jjkzk, A_l(z) = Z Bkzk,

k>vp k=vg k>val A—1

where ©; ;1 := 0 when k ¢ S,. Then, (16) is equivalent to: Vj <'s, ¥n > v,

n—pvp j—ln—pvp—rve 0
(17) Qin= D BrQaxO;+> Y > BiQui10ij.
k=val A—1 i =1 k=val A~1 I=vg i

Remark 6. Since —val A™' — vg < (p — 1)u, if n is an integer such that v < n < p

respectively n > pu en nvalA” —ve < p (respectively < m). Thus, for any n €
tivel then "=l

{v,..., u} the matrices Q;; and Q;; appearing in the right-hand side of (17) are such

that ¢ < p. Furthermore, if n > pu, the matrices Q);; and @;; appearing in the right-

hand side of (17) are such that ¢ < n. Thus, once the matrices Qjn, n € {v,...,u},

©; and ©; ;1 are known, the matrices @;, with n > u can be computed inductively.
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3.4.2. The window {v,...,}. We consider the map 7 : K((2))™ — K™#=*1 defined
by

T f(2) =) Fot €K™ = (o)

Concretely, m maps any vector of Laurent series with size m to the vector obtained
by concatenating the coefficients corresponding to 2V, z¥T1, ..., 2*. Let F be a matrix
whose columns F; are vectors of Laurent series of size m. By abuse of notation we
denote m(F') the matrix whose columns are the w(F;). We let V|, denote the vector
space {O}m(”P*”) x K™k=rp+1)  that is the image under 7w of the space of vectors
f € K((2))™ for which val f > vp. In particular, if (P, ) is an admissible pair as in

Proposition 5, and P, ..., P, are the columns of P, we have 7(P;) € Vy. For each
non-positive integer [ € {vg,...,0} NS, =: S;) we let M; denote the square matrix
defined by

(18) My (f(2)) = m(z' A7 (2) £ ("))

for all f € K((z))™ for which val f > vp, and which is null on the supplementary
space K™("P=¥) 5 {0}m(=vP+1) of V. From Remark 6, such matrices are well-defined.
Note, for computational considerations, that these matrices M; admit decompositions
into blocks of m x m matrices denoted by M;; ;, 1 <4,j < u— v + 1, such that:

v [0 ifje{l,...,vp—v}
Lij = Bity_1-1-p(j4v—1) Otherwise.

3.4.3. Reduction to a finite dimensional problem. From now on, we let M := M. The
map 7 and the matrices M = Moy, M_1, ..., M, allow us to express the admissibility
of a pair (P, 0). Indeed, the equation (17) for n € {v,...,u} is equivalent to

(19) Vie{l,...,rh w(Q)) = Mn(Q)0;+ > Y Mm(Q:)O .
i<j lES,,
Conversely, we have the following.

Proposition 7. Let r > 1 and let by,...,b. be integers with by + --- 4+ b, = m. For
each j € {1,...,r}, let Ej be a m(pu—v+1) xb; matriz. Suppose that the m columns of
Eq, ..., E, are K-linearly independent and belong to Vy. Let ©1,...,0,, ©;,;, 1 € SI'),
be matrices with entries in K, such that

(20) Vie{l,...,r}, E;j=ME;©;+) Y ME;0,;.
i<j lES),
Let © denote the m x m matriz with diagonal blocks ©1,...,0, and upper diagonal

blocks ©; j(z) = Zle‘% 0,172, Then, there exists a matriz P € GLy,(K((2))) such
that the pair (P, ©) is admissible for (23) and 7(P) = (E1|---|E;).

We establish Proposition 7 after the following lemma.

Lemma 8. Let P be an m x m matriz with entries in K((2)). Let © € GL,.(K[271])
be block upper triangular with constant diagonal blocks and support in S,. Suppose that
¢p(P)© = AP. If the columns of P are linearly independent over K, then they are
linearly independent over K((2)), that is P € GL,,,(K((2))), or, equivalently, (P, ©) is
an admissible pair.
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Proof. Let Pi,..., P, denote the columns of P. Since the entries of P are Laurent
series with coefficients in K, and Py,..., P,, are K-linearly independent, they are K-
linearly independent. Thus, up to enlarge K, we may suppose that © is upper triangu-
lar with constant diagonal entries 64, ...,0,,. We argue by contradiction. Assume on
the contrary that Py, ..., P, are K((z))-linearly dependent. Let r be minimal such that
Pi,..., P, are K((z))-linearly dependent. Let A(z) = "(A1(2),..., \r(2),0,...,0) €
K((2))™\ {0} be such that

MPL+-+MNP=0.

By minimality of r, A\, # 0. We may then suppose that A\, = 1. Since P,..., P, are
K-linearly independent, there exists an index i € {1,...,r — 1} such that \; ¢ K. We
let ig be the greatest of such indices. From the identity

¢p(P)OX = APA =0,

the fact that © is upper triangular and the fact that r is minimal, we deduce that
there exists h(z) € K((z)) such that

O(2)A(z) = h(2)A(ZP).
Looking at the rth coordinate on both side, we get h(z) = 6,. Thus,
O(2)A(z) = 0, A(=P).
Let (0,...,0,0;,tig11(2),- -, tm(2)), t; € K[z71], denote the igth row of ©. Then,
(0,...,0,0i, tig+1(2), - -, tm(2))A(2) = OpAiy (2P)
thus
(21) OioNig (2) + t(2) = 0, M (2P)

where #(z) € K[27!] has support in S,. Looking at the valuation on both sides, one of
the following mutually exclusive situations holds:

(a) val \;, = valt < pval \;,,
(b) val \j, = pval \;, < valt,
(c) valt = pval ;.

The first two situations are impossible since valt < 0. Thus (c) holds and val \;, = %}t.
Since val \;, is an integer and valt € S, we have valt = 0 that is ¢ € K and val \;; = 0.
Then, Equation (21) forces \;, to be in K, a contradiction. O

Proof of Proposition 7. For j € {1,...,r}, we define m x b; matrices of Laurent series
Qj =D >y, @jn2" in the following way:
® Qjup,---,Qj, are uniquely defined by the identity 7(Q;) = E;.
e Suppose that n > p and that ), ; is defined for any ¢ < j and k£ < n. Then
Qjn is uniquely defined by (17).

By (19) and (20), Q1,...,Qy, O satisfy (17). Let P = (Q1]---|Q»r), so that ¢,(P)O =
AP. By construction, m(P) = (Ei|---|E;). Thus, it only remains to prove that the
columns of P are K((z))-linearly independent. Since the columns of Ej, ..., E, are K-
linearly independent, the columns of P are K-linearly independent. Pi,..., P.. Then,
the result follows from Lemma 8. g
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3.5. Independence of the columns’ projections. We continue with K a field that
we do not assume to be algebraically closed. Proposition 7 implies that we only need to
compute m(P) and © in order to obtain any coefficient of the matrix P of an admissible
pair (P, 0). The following lemma guarantees that the matrix 7(P) has maximal rank.

Lemma 9. Let (P,©) be an admissible pair for (12) with P € GL,,(K((2)) and ©
whose support is in Sp. Then, the m columns of w(P) are K-linearly independent.

Proof. Let Pi,..., Py, denote the columns of P. Suppose on the contrary that the
column vectors 7w(Py),...,m(P,,) are K-linearly dependent and let \j,..., A\, € K,
not all zero, be such that

)\17T(P1) ++)\mﬂ'(Pm) =0.
Let A = (A1,...,Ap). Then, by definition of m and g,

val det(A)

1(P >
val(PA) > p—

— (m — 1)I/p.

Let ip be such that \;, # 0 and let A denote the matrix which is the identity but for
the igth column which is equal to A. Then, the matrix PA has m — 1 columns with

valuation at least vp and one column with valuation at least %ﬁm) — (m — Dvp.
Thus,
ldet(A ldet(A
valdet(PA) > (m — 1)vp + vaei) —(m—1)vp = W .
p— p—

Meanwhile, val det(PA) = valdet(P), which is equal to Val;ftl(A) from (14). This is a

contradiction. O

3.6. A naive approach that we will not pursue. Let K denote an effective field.
A naive approach for computing (P, ©) would consist in computing the columns of P
inductively. Indeed, the algebraic closure K of K remains effective, so that we could
assume K to be algebraically closed. Then, it is sufficient to find a pair for which © is
upper triangular. Then, (20) with » =m and b; = - -+ = b,,, = 1 provides an equation
for the jth column of 7(P) if one knows the previous columns. Precisely, we must look
for a pair (v, \) € Vp x K* such that

(22) (I—AM)v € ¢

where €; is the vector space spanned by the vectors M E;, | € 81’3, 1<i<j—1,and
Ey,...,E;_1 are the first columns of 7(P) that we already computed. Furthermore, we
know that A is one of the diagonal entries of ©, which means that it is an exponent of the
system, following the terminology introduced in [Roql8]. Since the set of exponents of
(12) is computable and finite, solving Equation (22) reduces to an elementary problem
of linear algebra. One may compute this way m columns FEj,..., E,, satisfying (20)
and obtain this way an admissible pair (P, ©) as in Proposition 7.

However, this method has several drawbacks compared to the algorithm we present
in the next section. In particular, it unnecessarily requires working over the algebraic
closure of K.
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4. COMPUTING THE PUISEUX PART OF A FUNDAMENTAL MATRIX OF SOLUTIONS

The approach described in Section 3.6 requires working over an algebraic closure of
K. This can be avoided as we shall now see. We let K be an effective field that we do
not assume to be algebraically closed. We consider a Mahler system

(23) dp(Y) =AY,  A(z) € GLn(K((2)))

for which d(A) = 1. Proposition 4 does not allow us to conclude that there exists a
pair (P,©) admissible with respect to (23), with P € GL,,(K((z))), since K is not
necessarily algebraically closed. This fact will follow from our construction. Recall

that if there exists an admissible pair (P,0) and © has its support in S, then the
vector space spanned by the columns of 7(P) has dimension m and is included in

VE) — {O}TTL(VP—I/) > Km(u—l/p—i-l)

since val(P) > vp. According to the block structure of ©, one can decompose P as
(Q1] -+ |@Qr) where Q; are matrices with m rows each. Our construction consists of
computing a sequence of vector spaces X1 C Xo C --- C Vj with the property that
m(Q;) C X; for each i, for any such admissible pair (P, 0). We establish that one of
these vector spaces has dimension m at some point. By choosing an appropriate basis,
we are able to build an admissible pair.

4.1. Construction of the vector spaces. Recall that 81/9 =S, N{ve,...,0}. We
define a sequence of vector spaces (X;);>0 by induction on j as follows.
o We let Xy := {0}.
o Let j € Z>( and assume that X; has been defined. We let il; := spang (M X; :
k€ 81/7) and X;41 be the largest subspace of V{ for which

(24) MX;1 CXj+4U; and  Xjp1 C MXjq + 4.
Notice that $ly = {0} and X; is the largest subspace of V) such that MX; = X;.

Lemma 10. The sequences (X;)j>0 and (Y;);>0 are non-decreasing and, for all j €
Zzo, :fj C ilj.

Proof. We prove by induction on j > 0 that X; C i;, X; C X;41 and U; C LUj4q.
When j = 0 the result is clear. Let j > 1 and assume the property true with 57 — 1.
By definition, X; C MX; 4 ;1. Since M = My and 0 € S}, we have MX; C i;.
Moreover, by induction hypothesis, 4; 1 C ;. Thus, X; C U;. Since X; C Vp, to
prove that X; C X;41 we just have to prove that X; satisfies (24). This follows from
the fact that MX; C U; and X; C 4;. The inclusion i; C ;4 is an immediate
consequence of the fact that X; C X;41. d

Before going to our main result, we provide a method to compute the spaces X;.
Consider the non-increasing sequence (§;¢)¢>0 of vector spaces defined by §;0 := Vo
and, for any integer ¢ > 0,

Sioe1 =T N M N(F 0 + ) N (Mg + 845) .
Lemma 11. Let j > 0 and let £; be the least integer for which §j¢; = §je;+1- Then
Xj1=Fju, and £ <m(p—vp +1).

Proof. First, we prove by induction on £ > 0 that X;11 C §j,. By assumption,
X1 CFjo0=Vo. Let £ > 0 and assume X1 C §;¢. Then, it follows from (24) that
X1 C §je+1, which ends the induction.
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The sequence (§ j,¢)¢ is a non-increasing sequence of sub-vector spaces of Vj. Since Vg
is finite dimensional, there exists a non-negative integer ¢ such that §;, = §;¢41. Let
¢; denote the least of all such integers. Then, §;,, C M*1(8j7gj +4;) N (M&Mj + 1)
which implies that §;, satisfies (24). Since §;¢, C Vo, by maximality of X;1, we
have X;11 D §j¢;- Then, the beginning of the proof implies that X;11 = §j,. Since
dim(Fj0) = dim Vy = m(u — vp + 1), we have £; < m(p —vp +1). O

Remark. In [FP22], we were computing fundamental matrices of solutions in the case
where the system is regular singular at 0. This corresponds precisely to the case where
the matrix © may be taken to be constant. In other words, this corresponds to the
case where the vector space X; has dimension m. Actually, in [FP22] our vector space,
called X4, was the greatest space to satisfy MyX; = X4 and X; C ker Ny for some
explicit linear maps My and Ny. In the case d = 1, this vector space is closely related
to the vector space X; defined here. Precisely, the vector space X, from [FP22] is the
projection of the vector space X1 onto the space where only the coefficients between
vp and [—val A71/(p — 1)] are taken into account. The map M, corresponds to the
restriction of the map M introduced here to this vector space, and the matrix Ny
corresponds to the projection of this map onto its coefficients between prp 4 val A=!
and vp — 1, whenever pvp +val A~ <wvp — 1.

4.2. Construction of an admissible pair. Algorithm 1 relies on the following key-
lemma.

Lemma 12. We have dim X, > m for some r > 0. For such an r, there erists a basis
€11, --,€1m,€21,---,€rm, of X, fitting with the nested sequence X1 C Xo C --- X,
such that the following holds: letting E;, j € {1,...,r} denote the matriz with columns
€j1,---,€jm,, there erists ©; € GLy,, (K) such that

(25) Ej — MEj@j € ﬂjfl .
Remark. Using (25), we can write for each j > 2,

E; — ME;0; = Z Z M E;©; ;1
i<j keS),
for some matrices ©; ; with coefficients in K. Then, from Proposition 7, there is an
admissible pair (P, 0) with 7(P) = (E1]|---|E,). In particular, dim X, = m.

Proof of Lemma 12. We start with the first statement. Let K denote the algebraic
closure of K and Vp(K), X;(K), 4;(K) denote the K-vector spaces spanned by Vp, X;
and ; respectively. Note that dimﬁ%j(ﬁ) = dimk X;. For any j € {1,...,r}, we
claim that X;(K) is the greatest K-vector space X for which MX C X + #f;_1(K) and
X C MX+4;_1(K). Indeed, since M has coefficients in K, such equations are defined
over K and the result follows® from the definition of X;.

Let (P,©) be admissible for the system over K((2)), with P € GL,,(K((2)). Such
a pair exists thanks to Proposition 4. Let P = (Q1] - - - |@,) denote the decomposition
of P fitting with the block decomposition of ©. Let E; := m(Q;) and let &; be the
K-vector space spanned by its columns. By Lemma 9, the dimension of &; +--- + &,

is equal to m. We are going to prove by induction on j > 1 that &; C X;(K). When

6T his also follows by applying Lemma 11 twice, once with K and once with K as a base field, and
noticing that the vector spaces §;,¢ built in the latter case are obtained from the ones built in the
former case by extension of the scalars from K to K.
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j= 1,L17) implies that Ey = M E101, which implies that Mg, = €&,. By maximality
of X1(K), ¢; C X;(K). Let j > 2 and suppose that ¢; C X;(K) for every i < j. From
(17) we deduce that

0
Ej = MEj@j + Z Z MlEiei,j,l .
1<j l=vg

Since €; C X;(K) for every i < j, the column vectors of the second term in the
right-hand side belong to £L;_1(K). Since ©; is invertible, we get that

M€, C ¢ +4; 1(K) and €; C M¢&; + 41, 1(K).

By maximality of X;(K), €; C X;(K). This ends the induction. Now, since X; C X;
when i < j, we have & + --- + &, C X,(K). Thus,

dimg X, = dimﬁir(ﬁ) > dimg & + - + & =m.

Let us now prove that we can find a basis of X, as mentioned in the lemma. We

only have to prove by induction on j that, for each j > 1, we can find e;1,...,€jm;
with the desired properties.
Let j = 1. Then, any basis e1,1,...,e1,,, of X; has the required property, since in

that case (25) reads 3 = M E101, which is true since X; = MX;.
Suppose j > 2 and that we have built ey 1, ... s €j—1m - Since Xj_1 C Uj_1 N X;
by Lemma 10, we may decompose X; as follows

X;=X199®3

where 2) is any supplementary space of X;_; within ;1 N X; and 3 is any supple-
mentary space of X;_1 ®9 (= X;NLl;_1) within X;. Consider a basis e;1,...,€;s of
and €js11,...,€jm; of 3. Let E; be the associated matrix and write E; =: (Ey|FE3)
its decomposition according to this cut”. Since MX; C X;+ 41 =3+, we have
M+ 3) C 3+4lj_1. Thus, we may write

(26) MEj — E3R S L[j_l

for some rectangular matrix R. Let us prove that R has maximal rank. Let U C 3 be
the vector space spanned by the columns of E5R. Then, (26) implies that M (9 +3) C
U+ 4l;_q. Let v € 3. Then,
veE3C %j C M.}:j +ﬂj71 C M.}:jfl —{—M(QJ —1—3) —I—ﬂjfl
C f{j_1 + ﬂj_g + 0 + Llj_l CU+ ﬂj_l
by Lemma 10. Thus, there exists w € U such that v+w € 4;_1. Meanwhile v+w € 3,
since ¥ C 3. Since 3Nl = {0}, v+ w = 0, that is v = —w € V. Hence V = 3,

that is, R has maximal rank. Thus, one can complete R into an invertible matrix V.
Then, since the columns of Ey belongs to ;_1, we have

ME]' — EjV € L[j71
We conclude by setting ©; := VL U

"If Q) (resp. 3) is the zero space then Ey (resp. E3) is the empty matrix.
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Algorithm 1: An algorithm to compute © and a truncation of P at order pu
where (P, ©) is an admissible pair.

Input: An integer p > 2 and a square matrix A with coefficients in K((z))
such that d(A) = 1.
Output: A matrix © and a truncation of a matrix P up to order u such that
(P,©) is an admissible pair with respect to the system (6).

Set X :={0}. // X will successively be equal to Xp, X, Xo,...
Let £ and U denote the empty lists. // They will respectively host the
matrices Fi,...,E, and the spaces g,..., 4. 1.
while dim(X) < m do
// Inductive computation of Xi,...,X, and of Ei,...,FE,.
Set 4l := spang (MpX : k € S).
Set S = Vg.

Set & :=FN M~ (F+ L) N (MF+ ).
while § # & do

Set § := &.
Set & :=FN M H(F+U) N (MF+ LL).
end

Let ) be a supplementary space of X within £ N §.

Let 3 be any supplementary space of X @ 2) within §.

Let Ey (resp. E3) be a matrix whose columns form a basis of ) (resp. 3)
and set £ = (Ey|E3).

Append F to the list £ and 4 to the list U.

Set X := 3.

end

// At this stage &= (Fy,...,E.), U= p,...,4._1) and X = X,.
Set r := card(E).

for j from 1 to r do
Compute an invertible matrix ©; with entries in K such that

Ej — MEj@j € Llj_l.
Let ©; jx be the constant matrices such that
Ej— ME;j©; =3;; > resy MiEiOijk-

Let Pj(z) = Z:VP ijkzk be the matrix of Laurent polynomial of valuation

at least vp and degree at most p such that =(P;) = E;.

end

Let P(z) := (Pi(2) | --- | P-(2)) and let © be the block upper triangular matrix
with diagonal blocks O1,...,0, and whose (7, j)th block is
@i,j(z) = ZkESZQ ®i7j7kzk when ¢ < j.

return (P, 0).

Algorithm 1 returns the truncation of P up to order u. Indeed, it is not difficult
to check that at the end of the first ‘while’ loop we have X = X, and the matrices
Eyq, ..., E, satisfy (20). Thus, the result follows from Proposition 7. Then, thanks to
Remark 6, it is an easy task to compute coefficients of P with higher orders. Note
that » < m, since the sequence (X;)i<i<, is increasing and, if we had X;, = X;,41 for
some ig < r, the sequence would be stationary from this index. Furthermore, for each
J, Lemma 11 implies that £; < m(pu—vp +1). Thus the second ‘while’ loop ends after
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at most m(pu — vp + 1) iterations. In the end, it is possible to bound the algorithm’s
complexity. We shall not provide details here.

5. COMPUTING THE HAHN AND THE CONSTANT PART OF A FUNDAMENTAL MATRIX
OF SOLUTIONS

Throughout Section 5, we assume that K is an effective field which is algebraically
closed. This restriction is necessary to obtain the matrix ec in the required form.
The matrix H could be computed over any field, but presenting it in this generality
would significantly complicate the arguments; therefore, we restrict to the algebraically
closed case. We fix an equation (23) for which d(A) = 1. We fix an admissible pair
(P, ©) for which we assume P € GL,,(K((z))) and © € GL,,(K[z7!]). Up to a gauge
transformation, we may suppose that © is upper triangular. Our goal is to describe the
matrices H and ec that intervene in the decomposition (7) of a fundamental matrix
of solutions. Recall that they satisfy

¢p(H)C =0OH and ¢pec) = Cec
where C' is the (upper triangular) constant term of ©.

5.1. Computing the matrix of Hahn series. The general form (7) of a fundamental
matrix of solutions guarantees that there exists a matrix H € GL,,(7) such that
¢p(H)C = ©H, where C is the constant part of ©. More precisely, it is established in
[FR25] that one may take H to be upper triangular with only 1s on the diagonal and
upper triangular entries with support in the set of negative rational numbers —a fact
we will reprove here. Let 6, ;(z) € K[27!], i < j, denote the upper diagonal entries
of © and 61,...,0,, € K denote its diagonal entries. Let c; ;, i < j, denote the upper
diagonal entries of C, that is, the constant term of 6; j(z). An upper triangular matrix
H = (h; )i ; with the identity on the diagonal and upper diagonal entries with support
in Q<o satisfies ¢,(H)C = ©H if and only if, for any i, j,

-1 -1
(27) 05k (2P) = Oihij(2) = Y Oin(2)hij(2) + 0i5(2) —cij — Y cijhia(aP).
k=i+1 I=i+1

The right-hand side of the equality has support in the set of negative rational numbers
since 0; ;(2) — ¢;; € 2z~ 'K[27!]. Consider the order < on {(,5) : i < j} introduced
in the proof of Proposition 5 and defined by (k,l) < (i,7) if and only if either | = j
and k > 1, or [ < j. Then, the hy ; and h;; intervening in the right-hand side are such
that (k,j) < (4,4) and (¢,1) < (4,4). Thus, the Hahn series h; ; may be computed by
induction on the pairs (4, 7).

By linearity, one only needs to consider inhomogeneous equations for which the
second member has one term. We consider three types of equations. Precisely, given
k,n,T € KX, v € Qs0, s > 1 and w = (u,a) with v = (ug,, . % )k,..k. C K a

£l

multi-linear recurrence sequence and a = (ay,...,as) we consider the equations
(28) kh(ZP) —nh(z) = 1277
(29) kh(2P) —nh(z) = 7277€,(2)
(30) rh(2P) —nh(z) = 7€,(2)
Recall that the Hahn series &, are defined by
£.(2) = Z ukl7__.’k32757117".7pk1ﬁ?'““5, with w := (u, a),
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where w = (uk,,. k. )k, k. C K is a multi-linear recurrence sequence and a :=
(a1,...,as) € Qs¢ for some integer s > 0.

Let us recall some facts about multi-linear recurrence sequences. We follow the
approach from [Sch00]. Let s > 1 be an integer and X = (X7,..., X;) be a s-tuple of
indeterminates. The ring K[X*!] = K[X;™,..., XF!] acts on the K-vector space of
sequences KZ° by

(Pu)g,,. k= Z Diooyis Wy i oo s+
i1yensis €7
when P(X) := Z“ZS pil,.‘.,iinl c- X and w = (U, g )k, k.- A sequence u €
K?%® is multi-linear recurrent if, letting Z(u) be the ideal {P € K[X*!] : Pu = 0}, the
quotient K[X*!]/Z(u) is a finite dimensional K-vector space. It is actually equivalent
requiring that w is linear recurrent with respect to each of its variables.

Lemma 13. A sequence w = (g, k. )ky,...ks € K7% is multi-linear recurrent if
and only if, for each i € {1,...,s} there exist an integer m; > 1 and coefficients
bio, ..., bim;, with bjm;b;0 # 0 such that, for every integers ki, ..., ks € Z,

mi
(31) > bi Uk ki btk = 0.
j=0

Proof. We first prove the reverse direction. Identity (31) is equivalent to the fact
that the polynomials > b; ;X belong to Z(w). Thus, the monomials X7{"--- XJ*,
§i €40,...,m; =1}, i € {1,...,s}, span the vector space K[X*1]/Z(u). A fortiori, it
is finite dimensional. Thus w is multi-linear recurrent.

Conversely, suppose that w is multi-linear recurrent and let m be the dimension of
K[X*!]/Z(u). Then, for each i, 1, X;, X?,..., X" € K[X*!] are linearly dependent
modulo Z(w). Thus, (31) holds for some m; < m. O

Given a multi-linear recurrence sequence u and a element # € K, the sequence with
general term

-1
(6] o I—k1
U kg, ks = E Uky,... ks 0

ki=1
is a multi-linear recurrence sequence. We denote it by ul?l. Indeed, let (31) be the

equations satisfied by w. The sequence ul?! also satisfies these equations when i €
{2,...,s}. When i =1, since

(0] [0] _
Y1 ke ks 9“1,k2,...,ks = U,... ks

we have
m
(0] , ) _
bl,muz+m+1,k2,...,ks + E :(bLJ*l - Hblaj)ul—i-l,kg,...,ks - eul,kz,...,ks =0.
=1

Using Lemma 13 we conclude that »!? is a multi-linear recurrence sequence.

We are now ready to solve Equations (28), (29) and (30).

Lemma 14. Let k,n,7 € K* and v € Qsg. Let s > 1 and w := (u,a) with u :=
(Why ks Jor ks 0nd @ = (a1, ..., as). Then:
l)k.

)

(1) P(2) == T& (). (1)) (2) is a solution to (28), where ug := (nK~
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(i) h(2) = T&(v,(va1.....a0)) (2) is a solution to (29) where v := (Vky,....k. )ko,....ks With

s

Ukg,ooes = (157 Oupy g,
(iii) h(z) := %E(u[m_q a)(z) is a solution to (30).
Proof. The proof of (i) is straightforward. Proving that the series from (ii) satisfies

(29) is straighforward too. The fact that the sequence v is multi-linear recurrent is an
immediate consequence of Lemma 13. Let us prove (iii). It is not difficult to check

that the series
k
h=23" (1) 6t e

=1
satisfies
rh(z") = nh(z) = 7€,(2)-
The fact that h(z) is a well-defined Hahn series is a consequence of [Roq24, Lemma 33].

It only remains to prove that h(z) has the desired form. Making a change of variable
| < k + k; and setting 6 := nx~!, we have

h(z) = - Ze%p (£.)

k:>1
T k T T R ETE
=~ uk17 7k02p+1 P ! e
kkl: 7k5>1
T — _ay__a . as
n >2 =1
T 4192 as
_T }: u PO G R
] lak2:~-7ks
Lko,....ks>1
-
=-£ z)
(ul?)a)(
n

This enables us to compute the matrix H explicitly.

Algorithm 2: An algorithm to compute the matrix H

Input: An upper triangular matrix O, with non-zero constant diagonal entries
and upper diagonal entries in K[z 7]
Output: A matrix H with coefficients in spang{£, : w € Q} such that
¢p(H)C =0H
Set h;j:=0for 1 <j<i<mand h;; :=1foreveryie{l,...,m}
for (i,7) € {1 <i < j < m} ordered with respect to < do
Using the expressions of hyy, (k,1) < (4, ) previously computed, decompose
(27) as a finite sum of equations of the form (28), (29) and (30).
Solve each of these equations by the formulas given in Lemma 14.
Set h; ;j to be the sum of these solutions.
end
return H := (h;;); ;.
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Remark. When K has characteristic 0, the sequences with general term
(32) R ks 0R g as € Zsg, 0, .., 05 € KX

form a basis of the K-vector space of multi-linear recurrence sequences [Sch00, Theo-
rem 2.1, Lemma 2.2]. In that case, the set {£,, w € Q} coincides with the K-vector
space spanned by the Hahn series introduced in [FR25]. It is not difficult to adapt
Algorithm 2 so that it returns the entries of H as linear combinations of some &, 4)
with w of the form (32). Indeed, using Lemma 14, the only delicate task is to express
ul?) under this form when the general term of w satisfies (32). Under this assumption,
the general term of ul? is

-1
= (T ) ot
k1=1

Thus, one only has to express 22;11 k91 (6,0~1)* under the desired form. When 6;0~! =
1, Faulhaber’s formula describes it as an explicit polynomial of degree a; + 1 in .
When 610! # 1, one can find a polynomial P(X) and a number v € K, depending
on ai, 61,6, such that 22;11 ko1(01:0~1)F = P(1)(6:671)! + . Explicit formulas may
easily be found by applying «; times the operator /\% on both sides of the identity
PP U % and setting A := 0,071

To conclude this section, and for the sake of completeness, let us explain why the
Hahn series &, are solutions of p-Mahler equations. Since this result is not necessary to
prove Theorem 1 and Theorem 2, we shall be brief. When the characteristic of K is 0,
this result is proved in [FR25] using the fact that any multi-linear recurrence sequence
is a linear combination of sequences with general term k(™ --- k2 \¥ ... \ks This
approach does not work in positive characteristic (consider, for example, the sequence
|k/p] mod p in F,). Fix a Hahn series £,. Let s be the associated parameter. If
s =0 then £, = 1 is a solution of a p-Mahler equation. Suppose that s > 1 and that
the result holds for any £, with s’ < s. Keeping the notation of Lemma 13, it is
straightforward that

bu)fw(z) + bl,léw(zp) + -+ bl,mlfw (mel)

is a linear combination of some 2~7€_, where the parameter s’ associated to each w’ is
s — 1. By induction hypothesis, &, is a solution of an inhomogeneous equation whose
right-hand side is itself a solution of a p-Mahler equation. It is classical that &, is then
a solution of a p-Mahler equation.

5.2. Computing solutions of constant systems. Let C denote a non-singular con-
stant matrix. The last step consists in computing a matrix ec whose entries are
K-linear combinations of the e/ such that ¢,(ec) = Cec. The strategy is explic-
itly described in [FR25]. Let us recall it briefly. Let C' = DU be the multiplicative
Dunford-Jordan decomposition of C', where D is diagonalizable, U is unipotent, and D
and U commute. Set ¢ .= W when k € Z>o. Then, since (U — 1) =0,
the matrix ‘

ey = (U — 1)k

0

satisfies ¢,(er) = Uey. Let Q € GL,,(K) be such that QDQ™! = diag(cy, ..., cm),
with c1,...,¢n € KX. Then, ep := Qdiag(e,, ..., €., )Q " satisfies ¢p(ep) = Dep.

3

b
Il
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Eventually, since D and U commute, ey and ep commute and ec := epey satisfies
¢p(ec) = Cec. This leads to the following algorithm.

Algorithm 3: An algorithm to compute a fundamental matrix of solution to
a constant system

Input: A constant matrix C' with coefficients in K.

Output: The matrix ec.

Write C = DU,

Set ey := S p (U — 1),

Let Q € GL,,(K) be such that QDQ~! = diag(cy, ..., cn) is diagonal;

Set ep := Qdiag(ec,, . .., e, ) QY

return epey;

5.3. On the necessity for the base field to be algebraically closed. We claim
that, when K is not algebraically closed, it is not always possible to build a matrix
ec whose entries are linear combinations of some e.f with ¢ € K*. Let us justify this.
Over the base field Q we consider the matrix

o= (%)

Algorithm 3 returns the matrix

o= (

Since the elements e, ¢ € Q, are linearly independent over %@[ﬁ] and since the solution

I

(€i +e—;) %(e_i — 61))

(e; —e—;)

ec of the system ¢, (Y) = CY is unique up to right product by an element of GL,,(Q),

there exists no such solution whose entries are linear combinations of the elements e ¢,
ceQ,je Zzo.

5.4. Description of the main algorithm. Recall that, to any equation (2), we can
associate a Mahler system by considering the companion matrix

1
A=
1
_@ ... ... _Gm-
am am

Then, finding a basis of solutions to (2) amounts to computing a fundamental matrix
of solutions to the associated system. This is the strategy which justifies Algorithm 4.
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Algorithm 4: An algorithm to compute a basis of solution to a Mahler equation

Input: A Mahler equation (2) and an integer n
Output: A basis of solution in the form (5), with a truncation of the series
fi,cjw up to order n

Let A denote the companion matrix associated to this equation;

Compute d := d(A);

if d # 1 then
| replace A with A(z%);

end

Let (P, ©) be the output of Algorithm 1 when taking A as input;

Compute the coefficients Py of the Puiseux matrix P up to order dn thanks to
(17);

Replace P with this new matrix;

Compute @ € GL,,(K) such that QOQ~! is upper triangular;

Replace P with PQ~! and © with QOQ™!;

Let H be the output of Algorithm 2 taking © as input;

Let ec be the output of Algorithm 3 taking the constant term of © as input;

return the first row of P(zV/4) H(z'/%)ec.

Remark. In the last step of this algorithm, one has to deal with terms of the form
€. (z'/%). However, up to replace the tuple a with a/d, such a term is of the form &,
for some w’ € Q. Thus, Algorithm 4 returns a basis of solutions of the desired form.
As already mentioned, the decomposition (5) is not unique. Nevertheless, when K
has characteristic 0, it is possible to make it unique. Consider the set €y of pairs
w := (u,a) where
e u has a general term of the form kJ" - - - kS )\]fl e )\’;’S, where aq,...,as € Z>g
and Aq,..., A GKX;
e a is a tuple of positive rational numbers whose denominator is coprime with
p and whose numerator is not divisible by p (recall that p is not necessarily
prime).
A decomposition (5) for which each w belongs to Qg is called standard in [FR25] and

such a decomposition always exists. Passing from any decomposition to the standard
one is not difficult. Details are provided in [FR25, Section 5.1.2].

5.5. Computing an equation for each Puiseux series appearing in (5). Al-
gorithm 4 returns a list (y1,...,ym) of solutions of a p-Mahler equation (11), of the
form

Jo
Yi = Z Z Z fi,c7j7w(21)€w€c£j

CEKQ j:0 wte

where Ko, ); are finite sets and f; . ;. are Puiseux series whose expansion up to z" is
computed. As mentioned in the introduction, each series can be uniquely determined
by providing a p-Mahler equation it satisfies. The construction is as follows. These
Puiseux series f; . jo are explicit K-linear combinations of the entries of the matrix
P, the first matrix of an admissible pair (P,©). The equation satisfied by a sum of
p-Mahler Puiseux series can be easily determined from the equations satisfied by each
term. Hence, one only has to compute an equation for each entry of P. Let f; ; be the
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(1,7)-th entry of P. From ¢,(P)© = AP we deduce that for each &,
K _ _ . _ _
Fia () = (6571A) - 0p(A) APO gy (0) 1 9k (0) ")

i?j
m2 P . . .
Thus, the m? + 1 series fij(2),.oo, fij (zp ) are explicit linear combinations of the

m? entries of P. One readily deduces a p-Mahler equation satisfied by f; ;.

6. EXAMPLES

Let us first run Algorithm 4 on an example in characteristic 0. Consider the Rudin-
Shapiro equation
(33) y(2) + (2 = Dy(z*) — 22y(2") = 0.

Here we have p = 2 and we may take K = Q. We run Algorithm 4 with this equation
as input and the integer n := 9. It computes the companion matrix

-3 )

associated with (33). The associated Newton polygon is the convex hull of the set
{(1,7),(2,7),(4,k) : 4,5 >0, k > 1}. Its slopes are 0 and % so that d(A) = 1.
Our algorithm calls Algorithm 1 which returns a pair (P, 0) with

— 142 z 1 L1
(1) ()

as we will prove in Section 6.1. Letting P, P> denote the columns of P, our algorithm
then computes recursively the coefficients P, and P, for n € {2,...,9} thanks to
(17). Then it replaces the matrix P with the matrix

5 5
T4 z422 =284 24 425 =254 27 425 42 z—322—1—%2'3—1—%24—%25—&—326—iz7—§z8+%z9
1422420 —254-274-2° %flJrzf%zz+z3+%z4fz5+%zb+z7f%‘328+z9

It then calls Algorithms 2 and 3, which return (see Sections 6.2 and 6.3)

2 2
(1 &a _ (! oser 3
H = (O 1 and ec = 0 62_% ,

where [-2] = (—2)%) € @Z. Then, Algorithm 4 returns the entries of the first row of
PHec, that is

flimlde+22 =22 420425 =20+ 2T+ 28427
and fo := —%fl + <f1£([_2] T+ %fl + g) e_1 where g is the top-right entry of P.
’ 2

6.1. Calling Algorithm 1. Since val A = —1 and val A=! = 0, the parameters (15)
are vp = —1, v = —1, v = —3, and pu = 1. Write A~!(2) = By + Bz with

10 -1 2
BO = <1 O) and Bl :<0 0) .

One checks that M = My and M; have the following block-decomposition

00 0 0 0 0 0 Bob 0 0
0 0 Bo 0 0 0 0 Bl 0 0
My=1]0o 0o B o0 o0 and M_;=1]0 0 0 By 0
00 0 By 0 00 0 B O
00 0 B 0 0 0 0 0 B
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where 0 denotes the zero matrix of size 2 x 2. Algorithm 1 is initialized with X := {0},
E:=() and U := ().
First iteration of the main ‘while’ loop. Entering the main ‘while’ loop, it sets 4 := {0},
§ := Vp and computes
6= ‘/0 OM_I‘/O OM‘/O = {t(0,0,0,0,070,)\1,)\1,)\2,0) : )‘17)\2 € Q}
» Execution of the inner ‘while’ loop
e Since & # §, it enters the inner ‘while’ loop and it sets § := &. Then, it
computes the new space &:

& :=FNM 'FNMF = spangf{er }.

where e; := £(0,0,0,0,0,0,1,1,1,0).
e Since & # §, it enters this inner loop a second time. The computation at that
stage leaves & unchanged. Thus, our algorithm exits this loop.

Since X = U = {0}, it sets P := {0} and 3 := spang{e;}. Thus Ey is the empty
matrix and £ = F3 = e;. The algorithm appends e; to £ and the zero space to U so
that & = (e1) and U = ({0}). Then it sets X = spang{e;}. Since dim(X) =1 < 2, it
enters a second time the main ‘while’ loop.

Second iteration of the main ‘while’ loop. It sets L := spanQ(Moel, M;e;) which is the
@-vector space spanned by e; and & where
x :="0,0,0,0,1,1,1,0,1,1).
Then it sets § := Vj. Then, the first computation of & gives
& := {*(0,0,0,0, 20, A1, A1 + A, Ao, Az, A1) 1 Ao, Ar, Ao, As € Q)
» Execution of the inner ‘while’ loop
e Since & # §, it enters the inner ‘while’ loop and it sets § := &. Then, &

becomes
& = {*(0,0,0,0,0, A1, A\ + X2, Ao, Mg, A1) A1, Ao, Az € Q).
e One more iteration of this ‘while’ loop gives & := spanQ{el, ez} with
es == "(0,0,0,0,0,1,0,—1,1,1).
e Then, one last iteration leaves & unchanged, so that it exits this loop.

Since e, ez and x are linearly independent, we have ) = {(0)} and 3 = spang{es}.
Thus Ey is the empty matrix and F = E3 = e3. Then, the algorithm appends ez to
& and the space U to U so that £ = (e1, e2) and U = ({0},spang{ei,z}). Then it sets
X = spang{ei, ex}. Since dim X = 2, it leaves the main ‘while’ loop.

Ezxecution of the ‘for’ loop. We have r = 2. The algorithm enters the ‘for’ loop. All
blocks of © will be 1 x 1 matrices. By some abuse of notation we will write them as
elements of Q. When j = 1, the algorithm sets ©1 := 1 and

P = (1—11—,2) ‘

In the second iteration of the loop (with j = 2), it sets Oy := —1/2, 129 = —1,

O12-1:=1and
— z
e(aihs)
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It exits the ‘for’ loop and returns ((Pyr, ), ©) where

1 11
@:z( z )
0 b

6.2. Calling Algorithm 2. Algorithm 2 takes as input the matrix ©. The only entry
of H this algorithm has to compute is hq 2 which satisfies

1 1
—§h172(22) — h172<2) = ; .

This is an equation of the form (28) with x := —% and 7 := 7 := 1. Thanks to Lemma
14, it returns hy2(2) 1= §(_g)1) = Zkzl(_g)szl/?k and
1 -1

— (Y &2
H: (0 1 .
1> as an input.

6.3. Calling Algorithm 3. Algorithm 3 is called with C' =: 0 _1

2
The DU decomposition of C'is U :=Id and D := C'. After diagonalizing C, Algorithm
3 returns ec where

(1 1\ (1 0\ (1 zeq -
60_0—% 0 es o —-2) \o e_1 :

6.4. An equation for the second Puiseux term. Algorithm 4 returns f; and fo,
which are truncations at order n =9 of two solutions h; and hs to (33). The solution
hi is a power series solution to (33). By contrast, the solution hg is of the form

wino
Wi
[SUIIN)

2 2
ho = _§h1 —+ <h1£([_2}’1) + §h1 + h) €_%

where h is some power series. Precisely, if P is the matrix of Laurent series whose
truncation is P and who satisfies ¢,(P)© = AP, then, h is the top-right entry of
P. Let us explain how to compute a Mahler equation satisfied by h. We let P ;
denote the entries of P. In particular, hy = P;; and h = P; 2. Iterating the identity

¢p(P)O© = AP and isolating the terms h(z%), k € {0,...,4}, we obtain

0 1 0 0
0 0 72(12_@ —2
(z—1)? 2 (z—1)" 2(z—1)
h(Z) =23 z z z p
h(22) 320442547 5 3274720025137 s o 1,1(2)
4 o 2(1—22) oy —2(23—224241) Py o(2)
h(z*) |= —4234322 1 =3 +323 3224241 23 P" ()
227 227 2.1(z
h(Zg) TS T2 T3 T2 ’
5215 13212417213 72
h(216) 5,14 _g 13_ 12,5 11 -5 2.7 _9.619.5 P a(2)
< 1l 7 0+5z973z8 - T
4, 2
210 g 118 g7 20224 IR +2:7 40,8
1215 27 +327-32043:513.4 2T
+326 32442241 4215 —222_2,-2
4215 4232221 Z
115

Looking at a vector in the left-kernel of this matrix, we get
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(—22"° =627 —82° — 82" —42°+42° 482" +-82° +62° +22)h(2)
+(—2" =27 =228 4227422 442" — 22— 2 —2)h(2?)
+(2P 2P 2 3210527 4 52% - 22T — 620 — 25 — 2t 328 — 22— 2 —1)h(z?)
F(—2" =232 43210 42" 42 P 2 2R
+(—22" =221 4221 1220 (2% =0,
which is a 2-Mahler equation satisfied by h.

6.5. Carlitz zeta-function. Let us briefly present an example in positive character-
istic. Let p > 0 be a prime number, 6 be a transcendental element over I, and K
denote the complement of the algebraic closure of F,((07!)) for the valuation associ-
ated to #~!. As mentioned in Section 2, the values at 1 of the Carlitz zeta-function,
(o is equal to f(0) where f(z) € K[[z]] satisfies

fEP)+ (P =0)f(2) = —(2" - 0).
Thus, f(z) satisfies the following Mahler equation, of order 2:

(34) (P =) —0)f(z) — (2P — 0 —1)(" —O)f(P) — (X — ) f(z*) = 0.

One easily checks that the Newton polygon associated to this equation has only one
slope which is null. Thus vg = vp = v = p = 0. The matrix M is then given by the
constant term of the inverse of the matrix of this system, that is

(1407t -6t
()

Thus, it acts as an isomorphism on Vj := K2. Then, Algorithm 1 returns

— 1 1 1 0
P:<1 0) and @:<0 9>.

Algorithm 2 returns H = Iy and Algorithm 3 returns

(10
C= N0 e

Thus, a basis of solutions of (34) is given by f(z) and g(z)ey where where f(z) is
defined as above and g¢(z) satisfies

(27 = 0)(2F" —0)g(z) — (=¥ — 6 — 1)(" — B)g(zF) — 6%(2P — 0)g(=F") = 0.
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